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SUMMARY

Approximately 55 million gallons of nuclear and chemical waste are stored at the Han-

ford site in the United States. The nuclear waste will be stabilized into a glass form via

vitrification. One of the main challenges associated with Hanford waste treatment is the

complexity of the waste, which calls for extensive sampling during processing.

In this thesis, the use of Process Analytical Technology (PAT), including in-situ infrared

and Raman spectroscopy, is demonstrated for Real-Time In-Line Monitoring (RTIM) of

simulated nuclear waste. In-situ monitoring will facilitate the continuous operation of the

waste treatment facility and help reduce employee exposure to hazardous working condi-

tions. However, in order to extract meaningful information from the spectroscopy measure-

ments, the IR and/or Raman spectra need to be converted into species concentrations. The

concentration values are used to evaluate the composition of the nuclear waste feed and

determine the amount of glass-forming chemicals that should be added to vitrify the waste

into a stable glass form.

The work in this thesis bridges the gap between spectroscopy data and concentration

outputs. A flexible spectra-to-composition modeling framework is developed to address

the varying complexity in the simulated waste mixtures. The initial work incorporates lin-

ear multivariate regression models, such as Partial Least-Squares Regression (PLSR), to

quantify the concentrations of process-relevant (target) species in the waste system, which

include nitrate, nitrite and sulfate. As the complexity of the waste system increases, which

is represented by the presence of additional species in the waste system, advanced signal

separation preprocessing techniques are incorporated in the modeling framework. The sig-

nal separation methods include blind source separation, such as Independent Component

Analysis (ICA), which is used to preprocess the spectra and classify the contributions of

the nuclear waste components into target (process-relevant species) and non-target species.

In this scenario, which is applicable to low-activity liquid waste processing at Hanford, the
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non-target subset represents species that are present in the waste, but whose concentration

measurements may not be required for process operation and control. By implementing

the blind source separation preprocessing step, the signal contributions of the non-target

species are removed before the spectra are analyzed with PLSR. This allows for increased

robustness of the PLSR model, which only requires mixtures of the target species as train-

ing data.

Another aspect of the thesis work is the analysis of non-linear phenomena occurring

in Raman spectra, centered around the nitrate peak which exhibited peak shifting during

certain conditions. The extent of the non-linear peak shifting behaviour is analyzed in the

presence of tank waste species of varying composition.

Finally, while the work in this thesis is mainly focused on applications for liquid waste

processing at the Hanford site, the BSS preprocessing and PLSR quantification framework

(BSS-PLSR) is also used to analyze mixture data for applications at the Savannah River

site, which holds approximately 35 million gallons of high-level radioactive waste. This

thesis showcases the successful use of in-situ infrared spectroscopy, in the form of Atten-

uated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), in conjunction with the

BSS-PLSR framework to track the concentrations of target species during slurry processing

at the Savannah River site.

Altogether, the work in this thesis is focused on enabling real-time monitoring of the

chemical composition of nuclear waste. The work spans both sample measurements with

in-situ spectroscopy and subsequent spectroscopy data-driven model development. The

work enables robust and efficient quantification of target chemical species concentrations

from multidimensional spectroscopy measurements.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Advances in Process Analytical Technology (PAT) have enabled collection of data in real-

time for all stages of process development [1]. The use of PAT can improve our under-

standing of a process during the early phases of development, which has been especially

beneficial for the pharmaceutical industry. Other applications include process monitoring

and verification that can facilitate real-time quality control, resulting in increased efficiency.

Another important application of in-situ probe technology is collection of data in hard-to-

access locations or hazardous environments, such as nuclear waste tanks. Compared to

offline analysis, the online approach offers rapid collection of data with little to no sam-

ple preparation, which can be used to control the process, while shielding operators from

hazards.

While PATs are capable of collecting rich data sets, useful for understanding and con-

trolling a given process, the bottleneck lies in interpreting the collected information. The

nature of the process dictates the number of PATs to be deployed, sometimes further in-

creasing the dimensionality and thus complexity of the data.

In this thesis, the challenges associated with complex and multidimensional data are

addressed by carefully designing training data sets of the target species, followed by ap-

plication of dimensionality reduction and blind source separation techniques. The focus of

the work is to enable RTIM for the processing of liquid low activity waste at the Hanford

site in the State of Washington. In the remainder of Chapter 1, the various aspects of nu-

clear waste remediation are discussed, with a focus on the Hanford site. In Chapter 2, we

introduce the system of target species (process-relevant species whose concentrations need

to be quantified to enable waste processing) and analyze the data with multivariate linear

models. In Chapter 3, the complexity of the system is increased by introducing non-target
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species to the simulated waste mixtures. These species are present in the real low-activity

waste at Hanford, but are not used for decision making during waste processing. A novel

Blind Source Separation-Partial Least Squares Regression (BSS-PLSR) framework is de-

veloped to address the presence of non-target species, whose peaks may overlap with those

of the targets. The BSS-PLSR framework consists of two stages; first, the contributions of

the non-target species are identified and isolated using blind source separation techniques,

second, the concentrations of the target species are quantified using a partial least-squares

regression model. Our work from Chapter 3 revealed non-linear phenomena associated

with the Raman nitrate peak, which are further studied in Chapter 4. To understand the

phenomena, we measured the extent of nonlinear behaviour (in the form of a blue shift) in

the presence of various anions and cations relevant for nuclear waste processing. In Chapter

5, the in-situ probes are used to measure simulated low-activity waste at different DFLAW

locations. Moving across the DFLAW flowsheet introduces additional complexities, such

as the presence of solids. In Chapter 6, we switch nuclear waste sites and focus on the De-

fense Waste Processing Facility (DWPF) at Savannah River National Laboratory (SRNL).

The work is focused on the potential deployment of an in-situ IR probe for measurement

of anion species in the highly radioactive slurry waste. Finally, Chapter 7 provides con-

clusions on the thesis work and offers a perspective on the future of in-situ spectroscopy

technology and chemometric modeling in the nuclear waste industry.

1.1 Legacy Nuclear Waste in the United States

The Department of Energy’s Office of Environmental Management (DOE-EM) has been

tasked with the clean-up of nuclear waste across 107 sites in the United States. Significant

progress has been made, including the completion of clean-up at 91 sites. However, ac-

cording to a 2019 U.S. Government Accountability Office (GAO) report [2], the remaining

sites are some of the most challenging to clean-up. Out of the 90 million gallons of ra-

dioactive and hazardous waste, approximately 55 million gallons are stored at the Hanford
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Site in Washington State. The waste originated from the production of plutonium as part

of the Manhattan Project. Throughout the years, the waste has been reprocessed, leading

to high complexity in chemical and physical composition. There are a total of 177 single

and double-shell waste tanks. Within the tanks, the properties of the waste have been al-

tered further via other activities, such as chemical processing and evaporation. This has

resulted in non-homogeneous waste categorized in three types: supernatant liquid, saltcake

solids, and sludge. The supernatant liquid and the dissolvable saltcake have been classi-

fied as Low Activity Waste (LAW) that contains small amounts of radionuclides, while the

water-insoluble sludge is classified as High Level Waste (HLW). Under the current time-

line, vitrification of the low-activity waste will be implemented first. Remediation efforts

are expected to continue for another 50 years. The goal is to immobilize all waste in a

borosilicate glass form, which will be cast in stainless steel canisters [3, 4, 5, 6].

1.2 Direct Feed Low Activity Waste (DFLAW) Processing

The majority of the waste at Hanford falls under the LAW classification. The DOE has

initiated the Direct Feed Low Activity Waste (DFLAW) project to expedite clean-up of low

activity waste. DFLAW aims to directly vitrify supernatant low activity waste, as shown

in Figure 1.1 [7]. The initial steps include feeding the waste into the Tank Side Cesium

Removal (TSCR) pretreatment facility to reduce Cs-137 levels and remove insoluble solids.

The preprocessed waste will be sent to the LAW vitrification facility. The waste will be

mixed with Glass Forming Chemicals (GFCs) to create a melter feed slurry, which will be

fed to a melter that operates at high temperatures to convert the feed to glass. The overall

glass formulation depends upon the composition of the waste. Secondary waste will be

treated in the Effluent Management Facility (EMF), and the concentrate will be recycled.
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Figure 1.1: Simplified flowsheet for Direct Feed Low Activity Waste (DFLAW) processing
[7].

1.3 Real-Time In-Line Monitoring (RTIM) at Hanford

The current Hanford mission is to process, immobilize and dispose of waste. The complex-

ity of the waste and its hazardous nature call for extensive sampling at different locations

across DFLAW to facilitate processing. It has been projected that thousands of samples

per year are needed to maintain environmental compliance, product quality, and operating

efficiency [8, 7]. In order to optimize the current sampling approach, the RTIM initiative

seeks to evaluate if any of the existing offline analytical techniques can be replaced by

online monitoring. In-situ monitoring can help minimize sample turn-around times, com-

pared to offline analysis of grab samples. Since the sampling would be performed at or

near the tank waste, the amount of secondary waste generated in the analytical laboratories

will be reduced. Online monitoring will also help reduce employee exposure to radiation

and other hazards associated with collecting samples for offline analysis. Finally, online

analysis can provide data that can be used for online quality control and process control at

different sampling locations [9, 10, 11].

As mentioned previously, the low-activity waste at Hanford will be stabilized into glass

under the DFLAW process. The Best Basis Inventory Maintenance (BBIM) tool is an on-

line resource that estimates and tracks chemical and radionuclide components from the
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Hanford tank farm [12, 13]. According to the BBIM, the supernatant waste from the AP

tank farm, which will be processed under DFLAW, is primarily made up of nonradioac-

tive species, including H2O, and various cations and anions, such as Na+, NO−
3 , NO−

2 ,

CO2−
3 , OH−, Al(OH)−4 , K+, SO2−

4 , Cl−, PO3−
4 , CrO2−

4 , C2O2−
4 , F− and additional total or-

ganic carbon (TOC) species (citrate, formate, acetate and ethylenediaminetetraacetic acid

or EDTA). It is important to note that while the waste consists of many species, a few

stand out as the most abundant ones, as shown in Figure 1.2. These species are currently

analyzed offline using Ion Chromatography (IC) methods [14]. Having the capability to

measure anion concentrations online using spectroscopic techniques would help optimize

processing under DFLAW.

Figure 1.2: LAW Supernatant Composition by the Best Basis Maintenance Inventory
(BBIM) tool [12, 13].

The goal of the Hanford RTIM program is to select and evaluate in-situ instrumenta-

tion for monitoring of low-activity waste. Selection criteria include cost of development,

operation and maintenance and ability to measure analytes of interest within the ±20%
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uncertainty level for the Hanford analytical laboratory [11]. The waste contains elemental,

molecular and radioactive species, thus a variety of in-situ instruments have been proposed

for use in DFLAW, including Raman spectroscopy, ATR-FTIR spectroscopy and Laser In-

duced Breakdown Spectroscopy (LIBS). Raman and ATR-FTIR have been prioritized over

ion chromatography for molecular analysis, since they do not require any sample prepara-

tion or consumables, while LIBS is being evaluated for elemental analysis [11].
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CHAPTER 2

MULTIVARIATE REGRESSION MODELS FOR IN-SITU MONITORING OF

SIMPLIFIED LIQUID LOW-ACTIVITY WASTE SIMULANTS1

2.1 Introduction

The liquid waste at Hanford, which is largely made up of water and sodium salts, such

as nitrate, nitrite, carbonate, sulfate, aluminate, hydroxide, phosphate, oxalate, chromate,

acetate, fluoride and other minor species, will be processed via vitrification under the direct-

feed low-activity waste (DFLAW) procedure [11]. In-situ monitoring techniques, such as

Raman and infrared (IR) spectroscopy can provide real-time information on the mixtures,

which is required for continuous operation of the melter during DFLAW. Online monitoring

tools can reduce the need for sample collection for off-line analysis, decreasing employee

exposure to hazardous working conditions and long analysis periods.

Despite the presence of tens of molecular species in the liquid low-activity waste, a

few stand out as the process-relevant species whose concentrations are important for the

formulation of stable glass. The key spectroscopically active species that need to be mon-

itored to facilitate DFLAW processing include nitrate and nitrite due to their prevalence in

low-activity waste, and sulfate since it can interfere with the vitrification process by ac-

cumulating on the melt surface and corroding the melter components [11, 16]. In order

to evaluate the performance of in-situ spectroscopy probes for liquid low-activity waste at

Hanford, a system consisting of the process-relevant molecular species is studied in this

chapter. The focus on this chapter is both on the instruments, comparing the measurements

of Raman and ATR-FTIR spectroscopy probes, and the model development.

1Adapted from ”S. Kocevska, R. W. Rousseau, M. A. Grover and G. M. Maggioni, “Multivariate Linear
Models for In Situ Monitoring of Low-Activity Nuclear Waste Using Infrared and Raman Spectroscopy,” in
Proceedings of the Waste Management Symposia, 2020.” [15]
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2.2 Methods

2.2.1 Spectroscopic Methods

Spectroscopic methods are based on interactions between electromagnetic radiation and

matter. Throughout this work, we use two spectroscopic methods, infrared (in the form of

Attenuated Total Reflectance-Fourier Transform Infrared or ATR-FTIR) and Raman spec-

troscopy. Absorption spectroscopy, such as ATR-FTIR, occurs when a molecule absorbs

light energy [17, 18]. A molecule is IR-active if there is a change in the dipole moment

during molecular vibrations, which generates a field that can interact with the electric field

from light radiation. Energy is absorbed if the natural frequency of the vibration matches

the frequency of the radiation.

Scattering spectroscopy, such as Raman spectroscopy (inelastic scattering), occurs when

the light radiation is scattered by matter. In Raman spectroscopy, the light radiation ex-

changes energy with the molecule, which results in a shift in the scattered radiation, known

as the Raman effect [18]. An overview of the spectroscopic methods is shown in Figure 2.1.

Figure 2.1: Infrared absorption and Raman scattering phenomena [19].
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Raman-active molecules exhibit changes in polarizability. In the case when molecular

bonds are electrically symmetrical, they do not absorb infrared energy and are thus IR-

inactive, but can still be detected using Raman spectroscopy. Similarly, molecules that are

weakly polarizable may be Raman-inactive, but IR-active. Due to the different measure-

ment mechanisms, both IR and Raman were used to probe the multicomponent systems in

this work. These techniques can also be used for verification and validation purposes if the

species of interest are both IR and Raman active.

The intensity of the measured light radiation in both ATR-FTIR and Raman spec-

troscopy can be related to the concentration of the measured species. Assuming a linear

dependence, the intensity can be expressed as a function of the concentration using the

Beer-Lambert law:

X = CL (2.1)

where X ∈ RnN×nL represents the measured spectra, C ∈ RnN×nK the concentrations and

L ∈ RnK×nL the pure component contributions. Note that nN is the number of measure-

ments, nL the number of wavenumbers and nK the total number of species.

2.2.2 Chemometric Methods

We selected four common chemometrics techniques to study the potential of ATR-FTIR

and Raman spectra in quantifying the composition of key analytes in nuclear waste [20].

The first two methods are variations of a multiple-least squares regression (MLR), where

the sum-squared error between the measured and reconstructed signal is minimized. The

number of species must be known for both techniques, which is one of the limitations of

this approach.

Classical Least-Squares Regression (CLSR)

In Classical Least-Squares Regression (CLSR) [20, 21, 22], also known as the K-Matrix

method, the molar attenuation coefficients are calculated using calibration data:
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K = C−1
c Xc (2.2)

where the subscript c is used to distinguish the calibration data, Xc ∈ RnN,c×nL,c represents

the measured spectra, Cc ∈ RnN,c×nK,c the concentrations and K ∈ RnK,c×nL,c the pure

component contributions. Note that nN,c is the number of measurements, nL,c the number

of wavenumbers and nK,c the total number of species for the calibration data.

The coefficients from K can be used to analyze mixtures with unknown composition,

using:

Xm = KCm (2.3)

where the subscript m is used to distinguish the mixture data and Xm represents the spectral

measurements of the unknown mixtures.

In CLSR, the number of wavelengths must be equal to or larger than the number of

components. One of the main limitations of this method is the accuracy of the calibration

set, which is affected by noise. The presence of noise may be misinterpreted as spectral

activity, which will be stored in K. The calibration set should therefore include the active

spectral region for each of the components to minimize the effect of noise. Other limitations

include the assumption of linearity and superposition, and the presence of peak overlap and

collinear wavenumbers.

Inverse Least-Squares Regression (ILSR)

Inverse Least-Squares Regression (ILSR) [20, 21, 22], also known as the P-matrix method,

is based on Beer-Lambert’s law, but while CLSR models the spectral signal from infor-

mation on the concentration and molar attenuation coefficients, ILSR uses the reverse ap-

proach to model the concentration as the product of the spectral signal and calibration

coefficient matrix P:
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Cc = PXc (2.4)

The coefficient matrix P is calculated from calibration data and relates the concentra-

tion of each component with the spectral signal at each wavelength. In this case, the number

of samples used in the calibration must be greater than the number of wavelengths used in

Xc. Once the coefficient matrix has been calculated, the concentration of an unknown

mixture can be determined using:

Cm = PXm (2.5)

ILSR is limited by the accuracy of the calibration set and the selection of wavelengths.

Using fewer wavelengths may minimize the effect of noise, but will not account for minor

spectral features that differentiate overlapping peaks. On the other hand, increasing the

number of samples will allow us to add more wavelengths to the model, but may lead to

collinearities that result in correlated regression coefficients.

Data reduction, such as Principal Component Analysis (PCA) [21, 23], is used to mit-

igate collinearity effects. PCA finds principal components that represent linear combina-

tions of the original variables for a given observation. This is accomplished by projecting

the original variables onto a new, smaller set of variables that are not correlated with each

other. The magnitudes of the principal components (scores) T are defined as:

T = XP (2.6)

where P stores the direction vectors of the principal components (loadings).
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Principal Component Regression (PCR)

Principal Component Regression (PCR) is a technique that combines PCA with MLR [21,

24]. First, the data set is reduced using PCA and then MLR is applied to regress the reduced

set.

Partial Least-Squares Regression (PLSR)

Partial Least-Squares Regression (PLSR) is another regression tool that performs data re-

duction and regression simultaneously, utilizing both the independent and dependent data

as input [21, 24]. PLSR often has superior predictive power compared to PCR, because it

considers the input-output relationship in the variable reduction. More detailed explana-

tions and derivations of these algorithms can be found elsewhere [25, 26, 27].

2.2.3 Experimental Design

The model system is based on a variation of the 5.6 M Na low-activity waste pretreatment

system (LAWPS) simulant [28, 29], and includes water and four sodium salts: nitrate, ni-

trite, carbonate and sulfate. The species with higher concentrations, NO−
3 and NO−

2 , as well

as SO2−
4 , which may interfere with the operation of the melter [11, 16], were designated

as target species. In addition, CO2−
3 and H2O were also treated as target species: CO2−

3

due to its abundance in the waste and signal overlap with nitrate for both Raman and IR

spectra, and H2O as the common solvent. Measurements were obtained simultaneously

using in-situ Raman and infrared (attenuated total reflectance-Fourier transform infrared or

ATR-FTIR) instruments. The temperature in the vessel was kept at 25◦C. Raman spectra

were collected using a Mettler Toledo ReactRaman 785 system equipped with a 785 nm

laser, at 300 mW laser power and 0.75 s exposure time. IR spectra were collected using a

Mettler Toledo ReactIR 10 system. Data acquisition was performed using iC Raman and

iC IR software from Mettler Toledo. The experimental set-up is shown in Figure 2.2.
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Figure 2.2: Experimental set-up.

The experimental design consisted of creating a training and test data sets of the mix-

tures. The wavenumber range was restricted to 548 – 1774 cm−1 for Raman and 914 –

1824 cm−1 for IR, which represent the regions of spectral activity for all species. A central

composite design with four factors (nitrate, nitrite, carbonate and sulfate) at three levels

(low, medium and high) was used to create the training data. Note that the solvent (wa-

ter), is not counted as a factor despite being a target species. Overall, 36 mixtures were

generated, including 12 repetitions of the center point based on a face centered design [30,

31]. The molal concentrations are given in Table 2.1. Each mixture in the test set contains

a different combination of the target constituents. A total of 12 mixtures were generated;

their concentrations are summarized in Table 2.2.
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Table 2.1: Experimental design for the training set. The molal concentrations are calculated
as the moles of the target species per kilogram of solvent (water).

Sample NO−
3

mol kg−1

NO−
2

mol kg−1

SO2−
4

mol kg−1

CO2−
3

mol kg−1

H2O
mol kg−1

1 0.00 0.00 0.00 0.00 55.51
2 0.00 0.00 0.00 0.61 55.51
3 0.00 0.00 0.19 0.61 55.51
4 0.00 1.26 0.19 0.61 55.51
5 1.49 1.26 0.19 0.61 55.51
6 0.00 0.00 0.19 0.00 55.51
7 0.00 1.26 0.19 0.00 55.51
8 1.50 1.26 0.19 0.00 55.51
9 0.00 1.27 0.00 0.00 55.51

10 0.00 1.27 0.00 0.61 55.51
11 1.50 1.27 0.00 0.61 55.51
12 1.48 0.00 0.00 0.00 55.51
13 1.48 0.00 0.19 0.00 55.51
14 1.48 0.00 0.19 0.61 55.51
15 1.48 0.00 0.00 0.61 55.51
16 1.47 1.25 0.00 0.00 55.51
17 0.00 0.63 0.10 0.31 55.51
18 1.49 0.63 0.10 0.31 55.51
19 0.75 0.00 0.10 0.31 55.51
20 0.75 1.27 0.10 0.31 55.51
21 0.74 0.62 0.00 0.31 55.51
22 0.74 0.62 0.19 0.31 55.51
23 0.74 0.63 0.10 0.00 55.51
24 0.74 0.63 0.10 0.61 55.51
25 0.75 0.63 0.10 0.31 55.51
26 0.74 0.63 0.10 0.31 55.51
27 0.75 0.63 0.09 0.31 55.51
28 0.75 0.63 0.10 0.31 55.51
29 0.75 0.63 0.10 0.31 55.51
30 0.75 0.63 0.10 0.31 55.51
31 0.75 0.63 0.10 0.31 55.51
32 0.75 0.63 0.10 0.31 55.51
33 0.75 0.63 0.10 0.31 55.51
34 0.75 0.63 0.09 0.30 55.51
35 0.75 0.63 0.09 0.31 55.51
36 0.75 0.63 0.10 0.31 55.51
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Table 2.2: Experimental design for the test set. The molal concentrations are calculated as
the moles of the target species per kilogram of solvent (water).

Sample NO−
3

mol kg−1

NO−
2

mol kg−1

SO2−
4

mol kg−1

CO2−
3

mol kg−1

H2O
mol kg−1

1 1.17 0.97 0.14 0.50 55.51
2 0.55 0.39 0.05 0.13 55.51
3 1.44 1.16 0.10 0.58 55.51
4 1.22 0.97 0.03 0.59 55.51
5 1.45 0.76 0.10 0.45 55.51
6 1.22 0.76 0.06 0.30 55.51
7 1.45 1.17 0.10 0.30 55.51
8 1.00 1.17 0.06 0.59 55.51
9 1.22 0.97 0.03 0.45 55.51

10 1.00 0.97 0.10 0.45 55.51
11 1.00 1.17 0.03 0.45 55.51
12 1.44 0.75 0.10 0.44 55.51

2.3 Results and Discussion

Spectroscopic fingerprints of the components are shown in Figure 2.3. The overlap be-

tween the nitrate and carbonate peak is apparent in both Raman and IR spectra, but is more

apparent in the IR region, which also overlaps with nitrite.

Figure 2.3: Reference spectra of the species in our model system: a) Raman spectroscopy;
b) ATR-FTIR spectroscopy. The data show the characteristic peaks of each species.
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The training and test data for the chemometric models are shown in Figure 2.4 and

Figure 2.5. The Raman and IR spectra were preprocessed by smoothing using a Savitzky-

Golay filter [22]. The Raman spectra were further preprocessed by performing a baseline

correction [32]. Note that the solvent (water) spectrum was not subtracted from the Ra-

man/IR spectra during the preprocessing steps. Past work has showed that the water base-

line in IR is sensitive to many disturbance variables, including the position of the probe and

agitation speed, and therefore may introduce error in the spectra when subtracted [17].

Figure 2.4: Spectral measurements of the training data set mixtures for a) Raman spec-
troscopy and b) ATR-FTIR spectroscopy. Concentrations for each measurement are shown
in Table 2.1.

The initial model comparison for both Raman and ATR-FTIR, using five principal com-

ponents in the PLSR and PCR models, is shown in Figure 2.6. The chemometric models

were designed using only molalities of the four analytes and excluded the solvent concen-

tration. The measured concentrations were calculated with a gravimetric analysis of the

amounts of solute used in each mixture.
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Figure 2.5: Spectral measurements of the test data set mixtures for a) Raman spectroscopy
and b) ATR-FTIR spectroscopy. Concentrations that match each measurement are shown
in Table 2.2.

Figure 2.6: PCR, PLSR, ILSR and CLSR model predictions using a) Raman and b) ATR-
FTIR data. The solid black line represents unity and the dashed black lines represents
±20% deviations, which are based on the uncertainty at the Hanford analytical laboratory
[11].

2.3.1 ATR-FTIR Data - Closer Look

The parity plots from Figure 2.6 facilitate some general observations, as well as trends

that vary for each spectroscopic technique. The main observation from Figure 2.6 is that

the ATR-FTIR predictions are much less accurate than those made using the same mod-

els on Raman data. Two possible explanation for prediction errors in the ATR-FTIR data

include the peak overlap among the species (which is more pronounced in IR compared

to the Raman spectra), and the water baseline in IR, since water absorbs more strongly in
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IR and exhibits a distinct peak in the 1600 cm−1 region. With the current model, the IR

peak of water is present in the spectra, but not accounted for in the concentration matrix

C, which only contains molalities of the four analytes (nitrate, nitrite, sulfate and carbon-

ate). In order to incorporate the water concentration data while training the models, the

concentration matrix C was augmented to include the water concentrations. The updated

results are shown in Figure 2.7. The results from Figure 2.7 show that incorporating the

water concentrations in the training data for ATR-FTIR has a positive effect on the model

predictions of the concentrations, across all models. The predicted concentrations of the

individual analytes are shown in Figure 2.8.

Figure 2.7: Updated ATR-FTIR model results (including water) showing predictions for a)
the full range of concentrations and b) the analyte range. The solid black line represents
unity and the dashed black lines represents ±20% deviations, which are based on the un-
certainty at the Hanford analytical laboratory [11].

2.3.2 Raman Data - Closer Look

All four linear models were able to predict the analyte concentrations well using Raman

spectra, as shown in Figure 2.6. The predicted concentrations of the individual analytes are

shown in Figure 2.9.
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Figure 2.8: PCR, PLSR, ILSR and CLSR model predictions on ATR-FTIR data for a)
nitrate, b) nitrite, c) carbonate and d) sulfate. The solid black line represents unity and the
dashed black lines represents ±20% deviations, which are based on the uncertainty at the
Hanford analytical laboratory [11].

Since the water concentrations were incorporated in the ATR-FTIR models, we also ran

a scenario where the Raman models included the water concentrations in the training data.

Note that the number of principal compnents (5) remained unchanged for both the ATR-

FTIR and Raman models. The Raman results are shown in Figure 2.10 (a). The results

indicate that the models were not able to predict the concentration of water as well as the

ATR-FTIR models. A potential explanation may involve the appearance of the water peak,

which only shows up as a minor peak in the 1600 cm−1 region. Another potential reason

is the number of principal components, which may not be sufficient for the Raman system

(a nonlinearity associated with a blue shift of the nitrate peak is discussed in more detail
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Figure 2.9: PCR, PLSR, ILSR and CLSR model predictions on Raman data for a) nitrate,
b) nitrite, c) carbonate and d) sulfate. The solid black line represents unity and the dashed
black lines represents ±20% deviations, which are based on the uncertainty at the Hanford
analytical laboratoryy [11].

in Chapters 3 and 4). Once we introduced an additional principal component, the water

concentration predictions improved for the ILSR, PLSR and PCR models, which is shown

in Figure 2.10 (b).

2.4 Conclusions

The work in this chapter has revealed key features of ATR-FTIR and Raman spectroscopy

in the context of online monitoring of salt species in nuclear waste. Both ATR-FTIR and

Raman spectroscopy were able to detect the process-relavant species from DFLAW. The

study showed that the ATR-FTIR technique, characterized by larger peaks that exhibit more
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Figure 2.10: Updated Raman model results (including water) showing predictions for a) the
full range of concentrations using five principal components in the PLSR and PCR models
and b) the full range of concentrations using six principal components in the PLSR and
PCR models. The solid black line represents unity and the dashed black lines represents
±20% deviations, which are based on the uncertainty at the Hanford analytical laboratory
[11].

pronounced overlap, is highly sensitive to the presence of water in the system. On the other

hand, Raman may be suseptible to nonlinear phenomena which affect the model and will

be discussed in the upcoming chapters. The PLSR and PCR models generally provided the

most accurate estimates of the concentrations of species, since they model the change in

spectral activity as a result of the change in concentration and are thus able to deconvolute

overlapping peaks more effectively. However the ILSR model also performed well, even

though it only uses a few key wavelengths, which shows that sometimes the simpler model

may provide more robust estimates. ILSR is highly dependent on the wavenumber selec-

tion, so these estimates will change if different wavenumbers are selected in the calibration,

while PLSR and PCR reduce the full spectrum and give more consistent predictions overall.

A final note is that these models may not provide such accurate estimates in the presence of

additional species that are not part of the training set, which is highly probable at Hanford,

considering the waste is made up of many target and non-target species, indicating that we

cannot rely solely on calibration approaches for accurate estimates of the composition of

low-activity waste.
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CHAPTER 3

BLIND SOURCE SEPARATION – PARTIAL LEAST SQUARES REGRESSION

MODEL FOR QUANTIFICATION OF TARGET SPECIES IN LIQUID

LOW-ACTIVITY WASTE SIMULANTS1

3.1 Introduction

Current approaches to measuring the composition of multicomponent mixtures include de-

veloping spectra-to-composition chemometrics models, which need to be trained with cal-

ibration data [17, 1]. The calibration data may be sensitive to process fluctuations, such as

changes in the temperature and pH. Another challenge, specifically associated with com-

plex mixtures having many constituents, is the size of the calibration data set. For example,

clean-up efforts at the Hanford site are highly dependent on the composition of the nuclear

waste, which contains 25 chemical constituents and 46 radionuclides, and is differentiated

in three categories (liquid, saltcake and sludge) [5].

Previous attempts at calculating the composition of the liquid waste consist of sample-

collection procedures on the order of hundreds of samples to train a chemometrics model,

such as partial least-squares regression (PLSR) [34, 14, 35]. Even though this method

can quantify the concentrations of the target species, it also generates extra information

on many minor species that may not be necessary to operate the process. Furthermore,

the calibration procedure may need to be repeated or the training data set extended in the

presence of any variations with respect to the species. This means that tailored models and

new calibrations are needed any time the new test data varies in composition from the set of

designated training data. This may occur when moving across different sampling locations

1Adapted from ”S. Kocevska, G. M. Maggioni, R. W. Rousseau, and M. A. Grover, “Spectroscopic Quan-
tification of Target Species in a Complex Mixture Using Blind Source Separation and Partial Least-Squares
Regression: A Case Study on Hanford Waste,” Ind. Eng. Chem. Res., vol. 60, no. 27, pp. 9885–9896, 2021.
Copyright 2021 American Chemical Society.” [33]
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in the DFLAW plant or even if there are variations in the feed.

On the other hand, blind source separation (BSS) techniques, such as independent com-

ponent analysis, which can decompose mixtures into its constituents with little or no prior

information, are emerging in the field of analytical chemistry [36]. Similarly to the more

recognized spectra-to-composition chemometric models (such as PLSR), BSS models, in-

cluding Independent Component Analysis (ICA), rely on linearity and superimposition as-

sumptions in the Beer-Lambert law. When applied to spectroscopy data, the goal of BSS is

to approximate the signal of the original components found in the mixtures, as well as their

contributions to the mixture. However, since both the mixture identity and composition are

unknown at the start, BSS is limited in quantifying the concentrations of the components

in the mixtures [37, 38, 39, 40].

To both mitigate the limitations of BSS and take advantage of its efficient identification

of independent components from mixture spectra, we propose a new methodology that uses

blind source separation techniques to classify and preprocess the mixture spectra, followed

by a regression to quantify the concentration of the target species. First, BSS is applied

to identify the independent components (sources) in the mixture, and then a matrix of

correlation coefficients is calculated to classify the components as targets (if they correlate

with reference spectra of the target species) or non-targets. This information is used to

preprocess the mixture data by removing the signals of the non-target components.

While the class of target species usually comprises a small number of process-relevant

constituents, the class of non-target species can be as large as necessary. Other than nuclear

waste, this approach is applicable to any mixture system in which non-target species may

interfere with the spectroscopic signals of the target species, such as quantification of nitrate

in wastewater [41, 42]. In the final step, the concentrations of the target species are quan-

tified using partial least-squares regression (PLSR), performed on the BSS-preprocessed

data.
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3.2 Methods

3.2.1 Experimental

The model system is based on a variation of the 5.6 M Na low-activity waste pretreatment

system (LAWPS) simulant [28, 29], and includes water and seven sodium salts: nitrate,

nitrite, carbonate, sulfate, phosphate, oxalate and acetate. For demonstration and practical

purposes, the species with higher concentrations, NO−
3 and NO−

2 , as well as SO2−
4 which

may interfere with the operation of the melter [11, 16], were labeled as target species. In

addition, CO2−
3 and H2O were also treated as target species: CO2−

3 due to its abundance

in the waste and signal overlap with nitrate for both Raman and IR spectra, and H2O as

the common solvent. The remaining species with lower concentrations, PO3−
4 , C2O2−

4 and

CH3COO−, were labeled as the non-target species. However, the classification of target

and non-target species could be different in practice, based on process expectations and

goals.

Measurements were obtained simultaneously using in-situ Raman and infrared (atten-

uated total reflectance-Fourier transform infrared or ATR-FTIR) instruments. The temper-

ature in the vessel was kept at 25◦C. Raman spectra were collected using a Mettler Toledo

ReactRaman 785 system equipped with a 785 nm laser, at 300 mW laser power and 0.75 s

exposure time. IR spectra were collected using a Mettler Toledo ReactIR 10 system. Data

acquisition was performed using iC Raman and iC IR software from Mettler Toledo.

3.2.2 Modeling

As discussed previously, the performance of common chemometric models is limited by

the extent and complexity of the calibration. For complex systems, such as nuclear waste

mixtures, a training data set that covers every possible combination of the spectroscop-

ically active species requires many independent measurements. Design of experiments

(DOE) could be used to reduce the size of the training set, but even DOE would be limited
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in optimizing a data set with a large number of species (DOE factors). Another common

approach is variable selection, where wavelength regions that correspond to the target ana-

lytes are carefully selected to improve the model performance [43, 44]. This idea can also

be extended to develop local models [45]. While variable selection is commonly used as a

data-reduction technique, similar to principal component analysis (PCA), it could also be

used to simplify the measurements. Since specific wavelengths are to be used to quantify

the concentrations, the model can be trained with only the target species. For the aforemen-

tioned DFLAW nuclear waste with four factors at three levels, the number of measurements

for a full factorial design would be 81. However, this simplification could only work if there

is no overlap between the spectra of the target and non-target species, so that the signals

of the non-targets do not interfere with those of the target species. Since Hanford tank

waste mixtures contain species whose spectroscopic signals overlap, a full calibration that

accounts for the complexity of the data set is employed for accurate spectra-to-composition

calculations [34]. In this paper, we bypass the need for a full calibration by removing the

signals of the non-target species with BSS.

Overview of Blind Source Separation

Independent Component Analysis (ICA), one of the most widely used methods to perform

BSS, seeks to identify the independent sources from mixture data [37, 39, 38]. The goal of

the algorithm is to solve:

X = CL = AS (3.1)

where X ∈ RnN×nL represents the measured spectra, C ∈ RnN×nK the concentrations and

L ∈ RnK×nL the pure component contributions. Note that nN is the number of measure-

ments, nL the number of wavenumbers and nK the total number of species. To find the

approximate solution, ICA identifies a mixing matrix A ∈ RnN×n̂K and a sources matrix

S ∈ Rn̂K×nL , where n̂K is the number of independent components or species estimated by

the algorithm. The orthogonal rotation of the mixture spectra seeks to minimize the mutual
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information or maximize the non-Gaussianity in the data, which have been preprocessed

by centering, whitening and dimensionality reduction. Another popular BSS technique is

Multiple Curve Resolution-Alternating Least Squares (MCR-ALS) [46], which similarly

to ICA, also decomposes the data into source and mixing matrices, but without relying on

mutual independence. MCR-ALS seeks a solution to:

minA,S∥X−AS∥ (3.2)

The MCR-ALS algorithm obtains a sources matrix—indicative of the pure components,

and a mixing matrix—indicative of the composition. Furthermore, MCR-ALS imposes a

constraint, such that the elements in the mixing matrix A ∈ RnN×n̂K are positive numbers.

Since MCR-ALS requires an initial guess, in this work, as well as previous works, we

combined ICA and MCR-ALS using the results from ICA to initiate MCR-ALS. Detailed

explanations and derivations of BSS techniques can be found elsewhere [40]. To perform

the ICA algorithm, we used FastICA [37], which maximizes the non-Gaussianity of the

sources. The MCR-ALS algorithm was performed using pyMCR, developed by NIST [47].

Design of Experiments

The experimental design consisted of creating a library of the reference spectra, as well

as test and training data sets of the mixtures. The use of each data set is explained in

Section 3.2.2. To create a library of the reference spectra, each analyte was dissolved

in water and its characteristic signal measured. The wavenumber range was restricted to

548 – 1774 cm−1 for Raman and 914 – 1824 cm−1 for IR, which represent the regions of

spectral activity for all species. Next, the background signal of the solvent was subtracted,

to isolate the peaks of the pure components. A baseline correction was also performed

[32], and the signal intensity in spectrally inactive regions was set to zero. Finally, each

spectrum underwent smoothing using a Savitzky-Golay filter [22], and was divided by its
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associated concentration to obtain unimolal references, shown in Figure 3.2.

Next, a test data set, Xts, was defined, representing the DFLAW mixtures that need to be

quantified and therefore contains both the target and non-target species. More specifically,

each mixture in Xts contains a different combination of the non-target constituents, to

include varying levels of interference on the signal of the targets. A total of 21 mixtures

were generated; their concentrations are summarized in Table 3.1.
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A training data set, Xtr, was also defined, which is used to train the PLSR model, and

is made of mixtures of the target species only. A central composite design with four factors

(nitrate, nitrite, carbonate and sulfate) at three levels (low, medium and high) was used to

create the training data. Note that the solvent (water), is not counted as a factor despite

being a target species. Overall, 36 mixtures were generated, including 12 repetitions of

the center point based on a face centered design [30, 31]. The concentrations are given

in Table 2.1 (the same training data set was used in Chapter 2). For this study, training

the model without the non-target species has decreased the number of required training

measurements from 100 (face centered design with seven factors) to 36 (face centered

design with four factors). The simplification is only possible because the BSS framework

will remove the signals of the non-target species from mixtures in Xts.

Both the Raman and IR mixture spectra in the test and training data sets were subjected

to smoothing. In addition, background correction was performed for the Raman data.

BSS-PLSR Framework

The preprocessing and quantification framework can be outlined in four steps, of which

the first three preprocess the data based on BSS and the last one quantifies the target

concentrations using PLSR. The Python code for BSS-PLSR can be found on GitHub:

https://github.com/skocevska/BSS-PLSR-for-Spectroscopy-Analysis.

1. Identifying the independent components (sources): First, BSS methods outlined

in Section 3.2.2, ICA and MCR-ALS, are used to analyze the mixture data X and

identify the independent components or sources, S ∈ Rn̂K×nL . The number of inde-

pendent components, n̂K , is determined using an automated analysis of the singular

value decomposition (SVD) of the mixture data, as reported in our previous work,

which also includes more details on the ICA and MCR-ALS procedures [40]. Typ-

ically BSS is applied to the mixture data that needs to be quantified, which in our

case is the test data set, Xts. However, in this work, the mixtures in the test data set

29



exhibit collinearities (caused by insufficient variability in the concentrations of the

target species), which hinders the correct identification of independent sources by

the BSS algorithm. To mitigate the collinearity effect, the BSS input is augmented

with the training data set, which contains sufficient variability of the target species.

Finally, the BSS input is also augmented with the library of reference spectra (targets

and non-targets), L, to further ensure that each species will be identified, including

the subset of non-targets. Therefore, the data input to BSS in Step 1 of the framework

is:

X =


Xts

Xtr

L

 (3.3)

The prior information we have provided to the algorithm should be readily available

in practice, considering that the training data set is originally created to train the

PLSR model, and a working spectral library of the species expected to be in the

mixtures can be collected prior to analysis. It is important to note that the BSS input

was augmented with additional spectral information specific to the model system for

the sole purpose of correctly identifying the independent components or sources. The

remaining analyses focus on quantifying the mixtures in the test data set only (Xts).

2. Correlating the components with target species: In the second step, a library of

the target species, Lt ∈ RñK×nL , is introduced to facilitate identification of com-

ponents and subsequent classification. Lt is a subset of the full library, L, and is

made of reference spectra for nitrate, nitrite, sulfate, carbonate and water, thus ñK is

set to five. Next, a matrix of Pearson correlation coefficients [48], R, is generated

to compare the normalized spectra from the target library with the normalized inde-

pendent components generated by BSS. Each reference spectrum in Lt is correlated

with each independent component (source) in S. The resulting matrix of correlation

30



coefficients has five rows (for each target species) and n̂K columns (for each source

spectrum identified by BSS). The maximum value in each row identifies the source

spectrum that correlates with the target species associated with the row. The sources

which do not correlate with the target reference spectra are classified as the non-target

species, and their total number is the difference between n̂K and ñK .

3. Removing the signal of non-target components: In the third step, the signal of the

non-target sources is calculated using the rows from S that did not correlate with Lt

in Step 2 and the corresponding columns in the mixing matrix A, following Equa-

tion 3.1. Once identified, their contributions are simply subtracted from the mixture

spectra. An overview of the preprocessing steps is shown in Figure 3.1.

4. Quantifying the concentrations of the target species: After preprocessing, the con-

centrations of the target species are quantified using a partial least-squares regression

with five principal components. The PLSR model is popular in chemometrics, since

it uses both the independent and dependent variables (concentration and spectral in-

tensity, respectively), and the relationship between the two to determine the regres-

sion coefficients. The PLSR approach is described in more detail elsewhere [25, 26].

The test data set in the PLSR model is comprised of the preprocessed mixture spec-

tra from Step 3 of the BSS-PLSR framework. The training data set is comprised of

measurements of the target species only (Xtr), based on the assumption that the BSS

preprocessing steps have completely removed the signals of the non-target species

from the test data set. Therefore, the goodness of the PLSR quantification of the

target species depends on the results of the BSS algorithm. In order to minimize any

baseline effects and to resolve any overlapping peaks, derivative spectroscopy was

used in the PLSR model [49]. More specifically, the first derivative of the test and

training data set spectra was used, since it improves the resolution of overlapping

peaks, but the loss in signal-to-noise ratio is not as prominent as when the second
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derivative is used. In addition, higher order derivatives tend to discriminate against

wider peaks, such as that of nitrite, which further motivated the use of the first deriva-

tive of the signal [50]. Derivative spectroscopy was applied using a Savitzky-Golay

filter with a second order polynomial, which also smooths the data [22]. The size

of the Savitzky-Golay window length was seven for Raman spectra and five for IR

spectra.

Figure 3.1: Blind source separation (BSS) preprocessing framework, based on a
subtraction-based approach.

In order to evaluate the potential of the BSS-PLSR framework, both BSS-processed

and unprocessed data were analyzed with the same PLSR model. This comparison shows

how the BSS-processing steps can affect the results of the PLSR model, which was not

trained with any non-target species. In this work, BSS-preprocessing is used to improve

the flexibility of the PLSR model, but other conventional methods may include using DOE

to introduce information on the non-target species or restricting the wavenumber region, as

discussed in Section 3.2.2.

3.3 Results and Discussion

Figure 3.2 shows that the most significant overlap in Raman occurs in the nitrate region, at

around 1050 cm−1 (between nitrate and carbonate), and in the region around 1400 cm −1

(between nitrite, acetate and oxalate). Additionally, there is overlap in the region around
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950 cm−1, among phosphate, acetate and oxalate, and to a lesser degree, among phosphate

and sulfate. The most prominent overlap in ATR-FTIR is in the region between 1250

and 1650 cm−1, where both target and non-target species have their characteristic peaks,

including nitrite, nitrate, carbonate, oxalate, acetate and water. Phosphate and sulfate also

overlap in the region around 1050 cm−1, but to a lesser degree. It is notable that IR exhibits

significant overlap between the target and non-target species, while the overlap in Raman

is more pronounced in each individual subset (i.e., the non-target species overlap among

themselves, and there is less overlap of this subset with the targets).

Figure 3.2: Reference spectra of the species in our model system: a) Raman spectroscopy;
b) ATR-FTIR spectroscopy. The spectra show the extent of overlap among the target and
non-target species.

3.3.1 Simulated Data

Prior to performing physical experiments, spectra of the mixtures were simulated according

to the experimental design. The in silico data were subjected to the BSS-PLSR framework,

to evaluate how it performs in ideal conditions. The spectra are simulated by multiplying

each unimolar reference spectrum by the desired concentration, and adding the contribu-

tions of each species to create a mixture with a given composition. Next, to simulate the

presence of noise in the experimental measurements, a predetermined level of white, Gaus-
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sian noise is added to the spectra. For example, to simulate the test set from Table 3.1,

using the eight reference spectra from Figure 3.2, one can evaluate:

Xts,s =

nK∑
k=1

Ck
ts,sL

k + η (3.4)

where the subscript s is used to distinguish the simulated data, the superscript k represents

each species, Cts,s ∈ RnN×nK represents the concentrations, L ∈ RnK×nL is the library of

the reference spectra and η ∈ RnK×nL represents the noise, which is assumed to be additive

to the signal. The level of added noise was based on the measurement noise associated with

the experimental system, represented by the variance of the noise, σ2
η . This value was used

to calculate the signal-to-noise ratio (SNR). The local SNR (labeled with subscript l) for

measurement i at a specific wavenumber j can be calculated as:

SNRij
l =

X2
ij

σ2
η

(3.5)

The average SNR (labeled with subscript avg) for measurement i can be calculated as:

SNRi
avg =

1

nL

nL∑
j=1

SNRij
l (3.6)

All SNR values were converted to decibel (dB), defined as 10 log10(SNR), for better reso-

lution at both lower and higher levels. In this work, the SNR values for Raman and IR were

calculated from experiments and similar levels were used in the simulated data, so that the

simulations resemble the conditions of real experiments. The same approach was used to

simulate the training data, Xtr,s, using the experimental design from Table 2.1.

Raman Spectroscopy

The simulated Raman spectra for Xts,s and Xtr,s are shown in Figure 3.3(a) and Fig-

ure 3.4(a). Note that noise that corresponds to a SNR value of 40 dB was added to the

34



simulated data. The algorithm identified seven independent components, which were com-

pared against the reference spectra of the five target species. Figure 3.5 shows the cor-

relation results. While sources for nitrate, nitrite, sulfate and carbonate were identified

correctly, water was not identified as a unique source; instead the peak of water is present

in the source which correlates highly with nitrite. In order to prevent any of the remaining

sources (non-targets) to be identified as water in the correlation matrix, a cut-off value of

0.95 was imposed. The intensity of water is low in Raman, which could have contributed

to the discrepancy.

Figure 3.3: Simulated test data set mixtures for a) Raman spectroscopy with SNRavg = 40
dB and b) ATR-FTIR spectroscopy with SNRavg = 55 dB. Concentrations for the 21
mixtures are given in Table 3.1.

The sources from Figure 3.5 that did not correlate with the target reference spectra,

were classified as the non-target species. Their contributions to the mixtures in Xts,s were

subtracted, as shown in Figure 3.6. The resulting preprocessed spectra for Xts,s, shown in

red, only include the signals of the target species.
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Figure 3.4: Simulated training data set mixtures for a) Raman spectroscopy with
SNRavg = 40 dB and b) ATR-FTIR spectroscopy with SNRavg = 55 dB. The concentra-
tions that match each measurement are shown in Table 2.1.

The preprocessed test data for Xts,s were used in Step 4 of the framework, to calculate

the concentrations of the target species using a PLSR model. The predicted concentrations

for the original and preprocessed data (using the same PLSR model) are compared to the

real values in Figure 3.7. The parity plots show that generally, the prediction errors im-

proved for the preprocessed data set, but the outcome of both PLSR and BSS-preprocessed

PLSR also depends on the data treatment of the spectra, such as the order of derivation

and window length for the Savitzky-Golay filter. A summary of the percent errors for each

point in the original and preprocessed data sets is shown in Section A.1, for different values

for the order of derivation and Savitzky-Golay smoothing window length.

ATR-FTIR Spectroscopy

Similar simulation analyses were performed for ATR-FTIR, for a SNR value of 55 dB,

based on the level of noise present in experimental IR data. While the IR spectra are less

noisy compared to Raman, they feature more significant overlap among the target and non-

target species, which complicates the identification of BSS components. For example, the
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Figure 3.5: Reference spectra-sources correlation: the first five rows show the normalized
reference spectra of the target species, while the last three rows show the normalized ref-
erence spectra of the non-target species. The normalized Raman sources identified by the
blind source separation algorithm are plotted in black (dashed). The BSS algorithm did not
identify a unique source for water.

carbonate and nitrate overlap with each other almost completely, but also with acetate, and

to a lower extent with oxalate and nitrite. At the same time, the signals of both the target and

non-target species are strong, which could help with identification, compared to Raman,

where the signals of phosphate, water, oxalate and acetate are weaker and therefore harder
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Figure 3.6: Removing the signals of the non-target species for Raman: a) original test set
mixture data (blue), containing both target and non-target species, b) signals of the non-
target species (yellow) that are subtracted to generate the preprocessed spectra (red) in c).
The intensity of the yellow signals is lower relative to the spectra of the targets.

to identify. The test and training data sets are plotted in Figure 3.3(b) and Figure 3.4(b). The

preprocessing procedure identified eight independent sources, shown in Figure 3.8. The

sources that correlated with nitrate, sulfate and water preserved their shapes completely,
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Figure 3.7: Parity plot comparing the Raman predictions made by PLSR on the original test
data (blue points) to those made by PLSR on the BSS-preprocessed test data (red points)
for Raman: a) 0th derivative spectra; b) 1st derivative spectra using a Savitzky-Golay filter
with a second order polynomial and window length size of 7; and c) 1st derivative spectra
using a Savitzky-Golay filter with a second order polynomial and window length size of
27.

while carbonate and nitrite show minor deviations. Even with the deviations, the correlation

coefficients are relatively high, as shown in Figure 3.8.

Next, the test data were preprocessed to remove the signals associated with the non-

target sources, shown in Figure 3.9. The parity plot that compares the predicted concen-

trations for the original and preprocessed data shows improvements for the preprocessed

mixtures (Figure 3.10). A summary of the percent errors for each point in the original and

preprocessed data sets is shown in Section A.2.

3.3.2 Experimental Data

The simulation study showed that the BSS-PLSR framework can improve the concen-

tration prediction accuracy for simulated data, which adhere to the assumptions in the

Beer-Lambert Law (linearity and superimposition). The accuracy of the PLSR model also

depends on the data treatment, such as the use of derivative spectroscopy and extent of
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Figure 3.8: Reference spectra-sources correlation: the first five rows show the normalized
reference spectra of the target species, while the last three rows show the normalized ref-
erence spectra of the non-target species. The normalized IR sources identified by the blind
source separation algorithm are plotted in black (dashed).

smoothing. The main challenge in the Raman spectra is the carbonate peak, which appears

as a shoulder on the main peak of nitrate, and exhibited higher prediction errors.

Experimental measurements of complex mixtures can be further complicated by base-

line changes (due to temperature fluctuations or drifting baseline due to fluorescence in Ra-

man), and nonlinear behaviours due to species interactions, or changes in the ionic strength,
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Figure 3.9: Removing the signals of the non-target species for IR: a) original mixture data
(blue), containing both target and non-target species, b) signals of the non-target species
(yellow) that are subtracted to generate the preprocessed spectra (red) in c). The intensity
of the yellow signals is lower relative to the spectra of the targets.

pH, etc. In order to evaluate the applicability of the BSS-PLSR framework to real spectra,

the mixtures were measured experimentally. Mixtures matching the concentrations from

Table 3.1 were prepared and measured to create the test data set, Xts, shown in Figure 3.11.
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Figure 3.10: Parity plot comparing the predictions made by PLSR on the original test data
(blue points) to those made by PLSR on the BSS-preprocessed test data (red points) for IR.

The training data set, Xtr, shown in Figure 3.12 was created in a similar manner. The data

preparation and experimental design are described in more details in Section 3.2.2.

Figure 3.11: Spectral measurements of the test data set mixtures for a) Raman spectroscopy
and b) ATR-FTIR spectroscopy. Concentrations that match each measurement are shown
in Table 3.1.
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Figure 3.12: Spectral measurements of the training data set mixtures for a) Raman spec-
troscopy and b) ATR-FTIR spectroscopy. Concentrations for each measurement are shown
in Table 2.1.

Raman Spectroscopy

Initially, the BSS-PLSR algorithm identified seven independent sources, which were clas-

sified as either target or non-target species according to their correlation coefficients, shown

in Figure 3.13. Note that there are eight chemical species present in the mixtures. While

sources for nitrate, nitrite, carbonate and sulfate were identified, the water was not identi-

fied as an independent component. The non-target sources included an independent source

for oxalate, and a lumped source for phosphate and acetate. Finally, the algorithm identified

a source associated with a blue shift of the nitrate peak, which will be revisited.

Water is an example of a linearly-dependent species, since it is present in each mea-

surement. The water peak in the 1600-1700 cm−1 region has a low intensity (the maximum

height is approximately 1640 when baselined) and the unimolar reference spectrum used

in the library data set has an even lower intensity. In order to improve the identification of

the water source, the water reference spectrum was amplified until a unique source asso-

ciated with water appeared (100-fold). The identification of an independent water source

also improved the identification of the remaining minor species. After this modification,
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Figure 3.13: Reference spectra-sources correlation: the first five rows show the normalized
reference spectra of the target species, while the last two rows show the normalized ref-
erence spectra of the non-target species. The normalized Raman sources identified by the
blind source separation algorithm are plotted in black (dashed). The BSS algorithm did not
identify water as a unique source.

a total of nine source were identified (one for each chemical species plus the additional

source associated with a blue shift of nitrate). This modification highlights the importance

of introducing linearly-independent spectra into BSS, in order to identify sources that have

physical relevance (i.e. correspond to chemical species). The sources which had the highest

correlation with the five target species are shown as the first five rows in Figure 3.14. The
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remaining four sources are also shown in Figure 3.14 and were classified as the non-target

species.

Figure 3.14: Reference spectra-sources correlation: the first five rows show the normalized
reference spectra of the target species, while the last three rows show the normalized ref-
erence spectra of the non-target species. The normalized Raman sources identified by the
blind source separation algorithm are plotted in black (dashed). The ”nitrate blue shift”
source from row six was reclassified as a target species.

The additional source from row six (counting from the top down) in Figure 3.14 cor-
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relates with the reference spectra of nitrate and carbonate. Figure 3.15 shows how the

nitrate-carbonate region is affected when the source is classified as a non-target species

and removed. Previous work has shown a blue shift of the main Raman peak of nitrate at

1050 cm−1 towards higher wavenumbers and, thus, shifting it closer to the main carbonate

peak, in the presence of increasing concentrations of certain anions and cations [51, 52,

33]. A similar source was identified in our previous work, using mixtures of nitrate, nitrite,

carbonate, sulfate and phosphate in water [40]. Considering this information, the source

was reclassified as an additional target species, by introducing a threshold value of 0.70

for the coefficients of correlation. This approach could also be used in practice, if a source

needs to be reclassified. The parity plot of the concentrations before re-classification is

shown in Figure 3.16, where its visible that the predicted concentration of nitrate is below

the parity line, especially for higher concentrations. The updated preprocessing procedure

in Figure 3.17 a) shows that the nitrate-carbonate region is unaltered once the source has

been reclassified as a target species. The classification of the nitrate shift source can affect

the concentration prediction for nitrate. The predicted concentrations for nitrate increased

once the nitrate shift source was reclassified as a target species.

The parity plot in Figure 3.17 b) shows that the preprocessing procedure improved the

concentration predictions for nitrate and nitrite compared to the results from the original

data. However, the prediction errors for the concentrations for sulfate and carbonate re-

mained higher than the acceptance criteria specification imposed at the Hanford analytical

lab (±20%) [11]. The percent errors for each point are summarized in Section A.3. The

performance of the partial least-squares model is affected by spectral overlap and species

interactions, and the training and test data sets may need to be expanded to account for

the complexity of the data. The concentrations in the PLSR model were predicted on first
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Figure 3.15: Overlay of the original, subtracted and preprocessed spectra for Raman, when
the nitrate shift source is classified as a non-target species: the yellow signal in the dashed
region has been subtracted during BSS-preprocessing.

Figure 3.16: Parity plot comparing the Raman predictions made by PLSR on the original
test data (blue points) to those made by PLSR on the BSS-preprocessed test data (red
points) for Raman experimental data, while the nitrate shift source was classified as a non-
target species.

derivative spectra, which should improve the spectral resolution of overlapping peaks. In

addition to first derivative spectra, we also performed the analysis for 0th derivative spectra;

the concentration predictions are shown in Figure 3.18.
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Figure 3.17: a) Removing the signals of the non-target species for Raman. b) Parity plot
comparing the predictions made by PLSR on the original test data (blue points) to those
made by PLSR on the BSS-preprocessed test data (red points) for Raman.

Figure 3.18: Parity plot comparing the Raman predictions made by PLSR on the original
test data (blue points) to those made by PLSR on the BSS-preprocessed test data (red
points) for Raman experimental data, using 0th derivative spectra.

Finally, assuming that information on the non-target species may not be available, we

ran an additional scenario in which only the reference spectra of the target species were
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provided. The data input to BSS in Step 1 of the framework consisted of:

Xs =


Xts,s

Xtr,s

Lt

 (3.7)

so that L from Equation 3.3 is replaced with a library of the target species only, Lt. The

correlation data is shown in Figure 3.19. The target sources were identified successfully

and with minor discrepancies, including the sources for nitrate, nitrite, sulfate, carbonate,

water and nitrate blue shift. Only one source was identified for the three non-target species,

mostly resembling acetate. The non-target source also has a peak in the nitrate-carbonate

region, and therefore the subtracted signals shown in Figure 3.20 contain some contribu-

tions from this region. The results indicate that for the most accurate identification, the

BSS-PLSR model should be supplied with reference spectra of all (or at least as many as

possible) species expected to be found in the mixtures. Note that even with providing the

reference spectra, the information needed to run BSS-PLSR requires less prior informa-

tion compared to more conventional methods, such as DOE, as explained in Section 3.2.2.

Alternatively, the BSS-preprocessing could be updated to identify the contributions associ-

ated with the target species, instead of identifying the non-target species contributions to be

subtracted (Step 3 of the BSS-PLSR framework). This method could also lead to errors, if

any of the target sources have contributions from the non-targets. However, this approach

may be more suitable for unknown mixtures with a large number of non-target species and

will be revisited.
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Figure 3.19: Reference spectra-sources correlation using Lt in the data input for BSS: the
first six rows show the normalized reference spectra of the target species, while the last row
shows the normalized reference spectra of the non-target species. The normalized Raman
sources identified by the blind source separation algorithm are plotted in black (dashed).

ATR-FTIR Spectroscopy

Similar to the Raman spectroscopy analysis, the BSS-PLSR framework was applied to pre-

process the mixture spectra and quantify the concentrations of the target species. Based

on trial and error, we determined that providing reference spectra that contain water in the

library, L, in Equation 3.3 provided better estimates of the independent sources in Step 1 of
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Figure 3.20: a) Removing the signals of the non-target species for Raman, using Lt in
the data input for BSS. b) Parity plot comparing the predictions made by PLSR on the
original test data (blue points) to those made by PLSR on the BSS-preprocessed test data
(red points) for Raman, using Lt in the data input for BSS.

the framework. Since water exhibits a high absorbance in IR, coupled with a raised base-

line in the region where other chemical species are IR-active, it is possible that removing

the water background can introduce error that affects the accuracy of Step 1 of the BSS-

PLSR framework. The water activity was not a challenge for collecting Raman spectra

since the Raman signal of water is mostly contained in the 1600 – 1700 cm−1 region, so

the subtraction of water from the reference spectra in L does not affect the identification of

sources from Raman experimental data. The BSS algorithm identified seven independent

components, shown in Figure 3.21. Note that two of the sources correlated highly with

the reference spectrum of carbonate (second row from top), one being the source identi-

fied as nitrate. Since the coefficient of correlation for the nitrate source was slightly higher

(0.915), the second source was not originally identified as a target species by the auto-

mated procedure. The discrepancy was addressed by reclassifying the second source as a

target species, by introducing a threshold value of 0.70. Other minor discrepancies include

residual peaks in the sources for nitrate, nitrite, carbonate and sulfate, including a peak

at 1640 cm−1, associated with water. The IR source of water exhibits a raised baseline

in the 900–1500 cm−1 region, which caused the mismatch with the water reference spec-

trum, whose baseline has been removed. The remaining two sources were classified as the
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non-target species. One of the non-target sources resembles phosphate, while the second

source resembles acetate. The oxalate was not recognized as a unique source in IR, since

the concentrations of oxalate in the test mixtures were low. The oxalate was recognized in

Raman, which generally has lower limits of detection.

Figure 3.21: Reference spectra-sources correlation: the first five rows show the normalized
reference spectra of the target species, while the last two rows show the normalized refer-
ence spectra of the non-target species. The normalized IR sources identified by the blind
source separation algorithm are plotted in black.
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Despite the discrepancies in the non-target sources detection, the BSS-preprocessing

improved the concentration predictions, which can be seen in the parity plot in Figure Fig-

ure 3.22(b) that compares the PLSR results for the original and preprocessed data. Overall,

the average percent errors for the target species are below the ±20% limits, except for

carbonate (23.4%). The percent errors for each point are given in Section 3.2.1 in the Sup-

plementary Information. The ATR-FTIR data set was less noisy, with an average SNR value

of 57 dB, compared to the Raman data with average SNR of 42 dB, and no peak shifting

as a result of species interactions was observed experimentally. While the concentrations

in the PLSR model were predicted on first derivative spectra, the results for 0th derivative

spectra are also shown below (Figure 3.23).

Figure 3.22: a) Removing the signals of the non-target species for IR. b) Parity plot com-
paring the predictions made by PLSR on the original test data (blue points) to those made
by PLSR on the BSS-preprocessed test data (red points) for IR.

Finally, the importance of including reference spectra of the non-target species was

tested by replacing L with Lt in the BSS input. Figure 3.24 shows that there are strong

correlations between the reference spectra of the target species and the sources classified

as targets. The sources classified as non-targets also include residual peaks of the target

53



Figure 3.23: Parity plot comparing the IR predictions made by PLSR on the original test
data (blue points) to those made by PLSR on the BSS-preprocessed test data (red points)
for IR experimental data, using 0th derivative spectra.

species. Even though the prediction results were not as accurate as those from Figure 3.22,

there were improvements following the BSS preprocessing procedure, as shown in Fig-

ure 3.25.

3.4 Conclusions

This work shows the utility of coupling blind source separation (BSS) with more estab-

lished chemometric models, such as partial least-squares regression (PLSR), for analyses

of multicomponent mixtures. The BSS preprocessing in BSS-PLSR removes the depen-

dence of the PLSR model on the non-target species, thus increasing its robustness. Another

feature of the BSS-PLSR framework is the increase in process efficiency and productivity,

since the design space of the training set is reduced to the target species only.

Correct identification of the independent sources is the first step in the BSS-PLSR

framework and therefore it affects the accuracy of subsequent steps. Should the avail-

54



Figure 3.24: Reference spectra-sources correlation using Lt in the data input for BSS: the
first five rows shows the normalized reference spectra of the target species, while the last
two rows show the normalized reference spectra of the non-target species. The normalized
IR sources identified by the blind source separation algorithm are plotted in black.

able samples from a process have insufficient variation in compositions to facilitate their

identification by BSS, as was the case with the DFLAW mixtures in the present study, addi-

tional data may be required. Supplementing process samples with mixtures having a range

of concentrations from the PLSR training data set and library of reference spectra greatly

improved identification of the independent sources by BSS. This step may not be required
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Figure 3.25: a) Removing the signals of the non-target species for IR, using Lt in the data
input for BSS. b) Parity plot comparing the predictions made by PLSR on the original test
data (blue points) to those made by PLSR on the BSS-preprocessed test data (red points)
for IR, using Lt in the data input for BSS.

if the unknown mixture spectra are expected to have variations in their concentrations.

The results show that preprocessing the data with BSS generally improved the PLSR

predictions for Raman and IR, despite using relatively small data sets. The analysis of Ra-

man data was challenging due to weaker signals for some of the species (water, phosphate,

oxalate and acetate), and deviations from the Beer-Lambert law due to species interac-

tions. The first challenge was partially addressed with using reference spectra in the BSS

input, while more research is needed to study the mechanism of species interactions and

the extent of deviation from Beer-Lambert law. While the IR data did not exhibit any devi-

ations from linearity, the overlap among target and non-target species was more prominent,

and reference spectra were provided in the BSS input. The developed algorithm is not

restricted to Raman and mid-IR, but in principle is applicable to any quantitative spectro-

scopic technique complying with analogous physico-mathematical assumptions, such as

the Beer-Lambert law.
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CHAPTER 4

EFFECT OF ION INTERACTIONS ON THE RAMAN SPECTRUM OF

NITRATE: TOWARD MONITORING OF LOW-ACTIVITY NUCLEAR WASTE

AT HANFORD1

4.1 Introduction

As discussed previously, the DFLAW supernatant waste is made of dissolved sodium salts,

including nitrate, nitrite, carbonate, sulfate, phosphate, hydroxide, aluminate, oxalate, ac-

etate, fluoride, chloride, and others. The number and concentrations of species that con-

stitute the waste can complicate the development of spectra-to-composition chemometric

models. Linear chemometric models rely on three main assumptions: (1) each substance

is characterized by a unique spectrum; (2) the spectrum of a multicomponent system is

given by the linear superposition of the spectra of the individual components; and (3) a

linear dependence relates the intensities of the peaks in a spectrum with the concentrations

of the species, following the Beer-Lambert law. A common spectra-to-composition model

used extensively in chemometrics is Partial Least Squares (PLS) regression, which models

the relationship between the independent variable (concentration) and dependent variable

(spectral intensity), maximizing their covariance [27]. A PLS model was used in Chapters

2 and 3 of this thesis.

However, nuclear waste simulants are complex mixtures that may not meet the linear-

ity assumptions of PLS. In particular, the waste mixtures contain both polyatomic species

with distinct Raman signals and monoatomic species that are Raman inactive but contribute

to the solution concentration. Experiments dating back to the 1960s [54, 55], discussed

1Adapted from ”S. Kocevska, G. M. Maggioni, S. H. Crouse, R. Prasad, R. W. Rousseau, and M. A.
Grover, Effect of Ion Interactions on the Raman Spectrum of NO−

3 : Toward Monitoring of Low-Activity
Nuclear Waste at Hanford, Chemical Engineering Research and Design, , vol. 181, no. 1, pp. 173–194,
2022.” [53]
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in more detail in Section 4.2, describe spectral changes in the Raman peaks of oxyanion

species, including nitrate, resulting from ion pairing. The sodium, Na+, and nitrate, NO−
3 ,

ions constitute a large portion of the waste, so that monitoring these two species correctly

is important for facilitating processing under DFLAW [5, 11, 29]. Considering the im-

portance of nitrate in the vitrification process, this work aims to present experimental data

relevant for DFLAW and quantify the change in location and shape of the main peak of

nitrate as it relates to the presence of other DFLAW constituents.

The chapter is structured as follows: Section 4.2 provides a theoretical background of

the main types of ionic interactions in aqueous solutions and describes how these interac-

tions can be individually identified from the main peak of nitrate to yield a more accurate

estimate of the peak shift. Section 4.3 reports the experimental materials and methods and

Section 4.4 details the experiments performed in this study. In particular, Section 4.4.1

discusses the quality of the deconvolution model against the data, while Section 4.4.2 ana-

lyzes the shift of nitrate spectrum with different ionic species. Finally, Section 4.5 provides

a summary of the results and final remarks on the nonlinear phenomena.

4.2 Ionic Interactions in Aqueous Solutions

4.2.1 Ion Association Theory

Raman spectroscopy has been widely used for characterization of ion association in elec-

trolyte solutions. The main types of ion association include: solvent sharing ion pairs (such

as SIP), contact ion pairs (CIP), and complex ion aggregates (CIA) [56, 57, 52]. In solvent

sharing ion pairs (SIP), the anion and cation share a single solvation layer. Loss of the

shared solvation layer leads to formation of contact ion pairs (CIP), where the anion and

cation are in direct mutual contact surrounded by a common solvation layer. Finally, com-

plex ion aggregates (CIA) can form via further association of contact ion pairs and possibly

free ions, resulting in a complex network [56, 52]. The possibility of complex interactions

among solute ions becomes greater with increased solution concentrations.
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4.2.2 Overview of Ion Pairing in Nitrate Solutions

Raman activity depends on the polarizability of the molecule [58]. The sodium ion (Na+) is

Raman inactive; the nitrate ion (NO−
3 ), on the other hand, possesses vibration and stretching

modes. The modes produce three peaks in the Raman spectrum, shown in Figure 4.1 (a).

The most prominent peak is due to the first mode of symmetric stretch, and is referred to as

the ν1 mode. Located at approximately 1048 cm−1 in aqueous solutions, the ν1 peak is the

focus of this work. The other minor peaks are due to an asymmetric stretch and bending

vibration modes, ν3 and ν4, and are located at 1400 cm−1 and 718 cm−1, respectively [51,

54, 55].

Figure 4.1: (a) The reference Raman spectrum of NaNO3 in water at 1 mol kg−1. The red
label highlights the peak due to the symmetric stretch of the nitrate anion, ν1, investigated
in this work. (b) The blue shift of the ν1 nitrate peak in aqueous solutions with increasing
sodium nitrate concentration (which equals to the ionic strength of the solution for this
experiment). The blue dotted lines highlight the shift of the peak maximum from 1048
to 1052 cm−1. The spectra were normalized by dividing by the maximum intensity and
plotted with an offset of 0.3 to highlight the peak shift.

One of the initial observations of a shift in the ν1 peak, resulting from ion pairing, was

reported by Vollmar in 1963, who focused on the effect of several cations on the position
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and width of the ν1 peak [54]. Subsequently, Miller and Macklin studied the behavior of

several oxyanions found in low activity waste at Hanford as a function of sodium content

[51]. Frost and James later studied the association equilibrium for unary aqueous solu-

tions of nitrate salts and identified the types of ionic interactions (free aquated nitrate ion,

solvent-separated ion pair, contact ion pair and ion aggregates) [57]. They also studied the

effect of ionic strength, temperature, and added halides on the association equilibrium for

binary aqueous solutions [59]. More recently, Yu et al. studied the variations of the ν1

peak as a result of NaNO3 concentration and temperature changes, identifying the ionic

interactions responsible for the peak shifting [52]. Rudolph et al. analyzed sodium nitrate

solutions in water using Raman and infrared spectroscopy, concluding that the nitrate is

fully dissociated at very low concentrations, while ion pair formation occurs at higher con-

centrations [60]. While previous work with sodium nitrate systems was focused on unary

and binary solutions, we study the nitrate ion association in solutions of increasing com-

plexity, culminating with complex nuclear waste simulants that contain two cation species

and more than ten anion species.

4.2.3 Peak Fitting

Each type of ionic interaction produces a characteristic Raman response, i.e. a specific

subpeak: it is the linear superposition of these subpeaks that produces the observed peak in

a spectrum. The linear superposition is simply the sum:

Xc(ν) =
5∑

j=1

Xs(ν; ν̄j, ωj, Aj) (4.1)

where ν is the wavenumber, Xc ∈ R1×nL is the superposition peak, Xs ∈ R1×nL is the

function representing the subpeaks, and nL is the number of wavenumbers. Usually, the

functions Xs are modeled by standard distributions, using Gaussian, [59] Lorentzian, [61]

or mixed Gaussian-Lorentzian [62] basis functions. The basis functions are uniquely de-
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fined by the location and shape parameters, ν̄j and ωj , respectively, up to a multiplicative

constant. The constant Aj in Equation 4.1 represents the area of the subpeak j and is

proportional to the strength of the interaction.

The ionic interactions described in Section 4.2.1 are present in aqueous solutions of

nitrate and determine the actual shape of its measured ν1 peak [57, 59, 56, 52]. Using

Equation 4.1 one can study the spectral shift in detail, since the blue shift (i.e., the shift

towards higher wavenumbers) of NO−
3 observed in the experiments reflects the changes

in the types of interactions between the nitrate and the other species in solution [57, 52].

As an example, the extent of peak shifting for a system consisting of sodium nitrate salt

dissolved in water is plotted in Figure 4.1 (b) and discussed in more detail in Section 4.4.2.

To separate the main peak into subpeaks we have opted for a Gaussian model with

location and shape parameters presented by Yu et al., shown in Table 4.1 [52]. In addition

to the subpeaks for free solvated nitrate anion (SNA), solvent-shared ion pairs (SIP), contact

ion pairs (CIP), and contact ion aggregates (CIA), Yu et al. used ab initio calculations to

assign a subpeak (at 1040 cm−1) to the coupling vibrations of water near NO−
3 (CPW) [52].

While the model of Yu and co-workers is not the only one reported in the literature [51,

62], it describes the data well and thoroughly characterizes the position and width of the

subpeaks using a large, consistent set of experiments [52]. The Gaussian basis function,

Xs, representing a subpeak is:

Xs(ν; ν̄j, ωj, Aj) =
Aj

ωj

√
π/2

exp

(
−2(ν − ν̄j)

2

ω2
j

)
(4.2)

where ν̄j and ωj represent the location (mean) and the shape (standard deviation) of the

peak, while Aj is the peak area. Note that ν̄j increases with the complexity of the interac-

tion, hence the subpeak associated with the coupling vibrations of water near NO−
3 is the

lowest one, while that associated with complex ion aggregates is the highest one.

The only parameters that require estimation are the areas of the subpeaks, A = [A1, A2, A3, A4, A5],
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Table 4.1: Table of parameters of the Gaussian functions used to deconvolve the nitrate
peak, from Yu and co-workers [52].

Interaction ν̄ [cm−1] ω [cm−1]
coupling vibrations of water near NO−

3 (CPW) 1040 20
free solvated NO−

3 (SNA) 1043 5.76
solvent-shared ion pairs (SIP) 1048.5 5.9

contact ion pairs (CIP) 1053.5 8.83
complex ion aggregates (CIA) 1057 17.2

corresponding to CPW, SNA, SIP, CIP and CIA, since they depend on the measured spectra.

A was estimated by minimizing the following objective function:

Φ(A) =

∥∥∥∥∥X̂−
5∑

j=1

Xs,j(ννν; ν̄j, ωj, Aj)

∥∥∥∥∥
2

(4.3)

where A is the vector of the areas defined above and X̂ the discretized measured spectra.

The minimization was performed using the lsqnonlin function in the optimization toolbox

of MATLAB R2021b©. The numerical values of A can then be used to determine the

relative effect of the interactions as well as their dependence on the system conditions.

The fitting quality was assessed by defining an error, Ei, based on the L1 norm that is

applicable to any individual measured spectrum:

Ei =

∥∥∥X̂i −Xci

∥∥∥
1∥∥∥X̂i

∥∥∥
1

(4.4)

where X̂i is the ith Raman spectrum measured during an experiment (from Table 4.2) with

N total measurements, Xci = Xci(ννν) is its Gaussian fitting at the n discretized wavenum-

bers, and Ei is its associated error. The definition of Ei allows it to be interpreted as a

generalized relative error between two vectors.
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4.3 Materials and Methods

Several important features of the LAW to be processed at Hanford are well reproduced

by simulant aqueous solutions containing specific proportions of the main salts found in

nuclear waste. The mixtures measured for this work are shown in Table 4.2. The mixtures

increase in complexity, starting with unary solutions of a nitrate salt in water to examine the

effect of the counter-ion (Na+, K+ and Al3+). While Al3+ was included in the experimental

design to study its effect on the nitrate peak, the predominant cations in the nuclear waste

at Hanford are limited to Na+ and K+ [29]. Next, we measure binary and ternary solutions

of sodium nitrate and one or two other salts, to examine the effect of a monoatomic anion

(Cl−) and polyatomic anions, such as SO2−
4 , NO−

2 , and CO2−
3 . Lastly, we measure low-

activity waste simulants. The simulants for Exps. 13 and 14 were prepared in our previous

work and include NaNO3, Na2SO4, NaNO2, Na2CO3, Na3PO4, NaCH3COO and Na2C2O4

[33]. The simulants for Exp. 15 were prepared at Savannah River National Laboratory

(SRNL) and contain a significant number of waste species (Na+, NO−
3 , NO−

2 , CO2−
3 , OH−,

Al(OH)−4 , K+, SO2−
4 , Cl−, PO3−

4 , CrO2−
4 , C2O2−

4 , F− and additional total organic carbon

(TOC) species (citrate, formate, acetate and ethylenediaminetetraacetic acid or EDTA))

[29].

The experiments were conducted at constant temperature (T = 298 K) in a 250-mL

vessel, stirred at 400 rpm to ensure well-mixed conditions. Raman spectra of the simulant

mixtures were measured using a Mettler Toledo ReactRaman system with a 785 nm laser

at laser power of 300 mW. The exposure time varied from 0.25 seconds for Exps. 1–12,

to 0.75 seconds for Exps. 13–15. Spectral preprocessing consisted of a baseline correction

[32], followed by a smoothing filter, according to our previous work [33]. Spectra collected

at 0.75 seconds exposure time were also divided by a conversion factor (3) to account for

the change in exposure time.
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Table 4.2: Table of salt combinations explored in the experiments.

Exp. NaNO3 [mol kg−1] 2nd Salt [mol kg−1] 3rd Salt [mol kg−1]
1 [0.68 - 9.47] - -
2 - KNO3 [0.07 - 3.28] -
3 - (AlNO3)3 [0.13 - 1.20] -
4 [2.02] NaCl [0 - 4.78] -
5 [2.03] Na2SO4 [0 - 1.79] -
6 [2.03] NaNO2 [0 - 5.73] -
7 [2.03] Na2CO3 [0 - 2.57] -
8 [2.03] Na3PO4 [0 - 0.27] -
9 [2.03] NaNO2 [0 - 3.42] Na2SO4 [0 - 1.02]

10 [2.03] NaNO2 [0 - 3.43] Na2CO3 [0 - 1.89]
11 [2.03] Na2SO4 [0 - 1.67] Na2CO3 [0 - 1.92]
12 [2.03] NaNO2 [0 - 3.43] NaCl [0 - 3.89]

NaNO3 [mol kg−1] Other Salts [mol kg−1]
13 [0.74 - 1.50] Na2SO4 [0 - 0.19], NaNO2 [0 - 1.27], Na2CO3 [0 - 0.61] [33]

14 [0.54 - 1.43]
Na2SO4 [0.03 - 0.14], NaNO2 [0.38 - 1.17], Na2CO3 [0.12 - 0.59],
Na3PO4 [0 - 0.12], NaCH3COO [0 - 0.19], Na2C2O4 [0 - 0.05] [33]

15 ✓ LAW feed simulant components [29]

4.4 Experimental Results

Presently, to the best of our knowledge, there is no theory-based model capable of predict-

ing all the interactions taking place among the ions in Hanford wastes, and consequently

how such interactions affect the measured Raman spectra. We have conducted a series of

experiments, using Exp. 1 (increasing concentrations of sodium nitrate in water) as the

reference case.

The results are reported in terms of ion concentration, as well as ionic strength, I , which

measures the electrolytic character of a solution and accounts for the type and concentration

of all ions in the system:

I =
1

2

∑
k

z2kmk (4.5)

where mk and zk are the molal concentration and charge number of the ion k; the summa-

tion is over all ionic species in the system.
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4.4.1 Subpeaks Separation

A direct measurement of the blue shift occurring at different conditions is limited by the

resolution of the Raman apparatus used in the experiments, i.e. by its sampling rate in

the wavenumber space. The Raman device used in this work has a spectral resolution

of 6 cm−1, resulting in wavenumber discretization with a step of ∆ν = 1 cm−1. Thus,

changes smaller than this value are not resolved, due to the effect of rounding and of noise.

Nevertheless, as previously discussed, one can exploit the fact that the ν1 peak of nitrate is

composed of five subpeaks, as shown in Table 4.1.

In order to determine if the Gaussian model from Section Section 4.2.3 is appropriate

for our system, spectra from the unary system of sodium nitrate in water (Exp. 1 in Table

Table 4.2), corresponding to a low (0.7 m) and high (9.5 m) ionic strength were fit and the

errors were quantified using Equation 4.4. Since the ions are monovalent, the ionic strength

equals the concentration of each individual ion. Figure 4.2 provides a visual representation

of the fitting quality for the spectra, which are plotted in the range from 1020 to 1080 cm−1

(i.e., where the ν1 nitrate peak is located). The errors range from 3–6% and indicate the

Gaussian model fit the data well, with a slight disagreement around the peak maximum.

Model comparison using the Akaike information criterion (AIC) was performed for the

sodium nitrate system and is shown in Section B.2. Additional spectra from four experi-

ments (Exps. 1, 5, 6 and 7 from Table 2) with Na+ concentrations of 1.4 m, 2.2 m, 3.2

m and 3.1 m respectively were fit to further test the Gaussian model. The model fits the

data well, as shown in Figure 4.3. A slight disagreement can be observed in the rightmost

end of the peak (higher wavenumbers), with errors in the 5–7% range (calculated using

Equation 4.4). The subpeak areas are summarized in Table 4.3.
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Figure 4.2: The areas of the subpeaks indicate the type of ionic interactions prevailing in
each unary system at (a) 0.7 m Na+ and (b) 9.5 m Na+. The measurements (solid black
lines) were fit using the Gaussian model from Section 4.2.3 (dashed and solid magenta
lines). The errors were calculated using Equation 4.4. The prevailing subpeak changes
from SIP to CIP as the concentration increases, corresponding with the formation of contact
ion pairs in the presence of greater sodium nitrate concentrations. The CIA subpeak also
becomes relevant at high concentration, indicating the presence of complex ion aggregates.

4.4.2 Nitrate Peak Analysis

Influence of Nitrate Counter Ion

The effect of the counter ion on the ν1 nitrate peak shift was studied first, starting with

experiments of increasing concentration of NaNO3. The system of sodium nitrate in water

(Exp. 1) was used as a reference as it was the simplest mixture comprised of both ions of

interest (NO−
3 and Na+). The ν1 nitrate peak not only shifts, but it also changes shape, as

seen in Figure 4.1 (b) and Figure 4.2. These results are in agreement with those of Yu and

coworkers [52]. As discussed previously, Figure 4.2 shows the analysis of the subpeaks

identified using the Gaussian model. At the lower concentration, the subpeaks for CPW,
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Figure 4.3: The experimentally measured ν1 nitrate peaks for (a) unary solution of sodium
nitrate (Exp. 1), (b) binary solution of sodium nitrate and nitrite (Exp. 6), (c) binary
solution of sodium nitrate and carbonate (Exp. 7) and (d) binary solution of sodium nitrate
and sulfate (Exp. 5). The measurements (solid lines) were fit using the Gaussian model
from Section 4.2.3 (dashed lines). The errors were calculated using Equation 4.4.

Table 4.3: Table of fitted subpeak areas for spectra in Figure 4.3, using the Gaussian model
from Section 4.2.3. The subpeak areas have been normalized by the total area.

Experiment
A1

(CPW)
A2

(SNA)
A3

(SIP)
A4

(CIP)
A5

(CIA)
NaNO3 (Exp. 1) 0.124 0.108 0.421 0.317 0.030

NaNO3 / NaNO2 (Exp. 6) 0.107 0.078 0.347 0.433 0.036
NaNO3 / Na2CO3 (Exp. 7) 0.120 0.079 0.353 0.448 0.000
NaNO3 / Na2SO4 (Exp. 5) 0.114 0.091 0.387 0.378 0.030

SNA, SIP and CIP are present, with SIP interactions dominating. The subpeak of CIA

interactions (located at about 1057 cm−1) is not observable. At the higher concentration,

all five subpeaks are present, but the CIP subpeak now dominates the peak, while the SNA

and SIP subpeaks have reduced in size. The CIA subpeak is now visible, with a peak width

significantly larger than the other subpeaks. Finally, the CPW peak, located at the lowest

wavenumber, exhibits a decrease, but is still present even at the high concentration. The

changes in subpeak distributions explain the behavior of the overall peak, which exhibits a

shift of its maximum and a deformation (see also Figure 4.1 (b)).
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While Na+ is the most abundant cation in the low-activity supernate waste, K+ is also

present [29]. In addition, the effect of Al3+, a cation with a smaller radius, is studied.

Note that the Al3+ ion is not present in Hanford nuclear waste [63]. Figure 4.4 shows

the extent of peak shifting in mixtures of potassium nitrate and aluminium nitrate (Exp.

2 and Exp. 3 in Table 4.2), compared to the sodium nitrate control experiment (Exp. 1).

The NaNO3 solutions exhibited a significant peak shift, followed by the KNO3 system,

while the (AlNO3)3 system only exhibited a minor shift. The studies were limited by the

solubilities of the salts in water. Vollmar reported an inverse relationship between the size

of the atomic radius and extent of hydration [54]. Therefore, larger ions, such as Na+ and

K+ are less hydrated and more susceptible to forming contact ion pairs, resulting in more

pronounced blue shift of the ν1 nitrate peak. Cations with smaller radii, such as Al3+, are

more hydrated and less likely to form contact ion pairs. Rudolph studied the solvation

shell structure of Al3+, concluding that it is strongly hydrated [64]. Al3+ does not induce a

significant blue shift of the ν1 peak; CIP and CIA interactions, responsible for the observed

shift, may be prevented by a stable solvation shell, rendering the Al3+ ion relatively inert.

Figure 4.4 also shows that the ionic strength does not correlate strongly with the extent of

the shift, while the concentration of the cation seems to be a better indicator of the shifting

behavior of the nitrate peak.

Influence of Cl− Monoatomic Anion

Monoatomic halide anions, such as Cl−, are Raman inactive, hence they do not produce

additional peaks in the spectra. Frost and James investigated chloride interactions with

nitrate by conducting several experiments (first at constant ionic strength, then at varying

concentrations of chloride). They also studied the influence of the halide type by perform-

ing experiments with both sodium chloride and iodide, concluding that larger anion size

favors the formation of CIP interaction between water and the halides, rather than with
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Figure 4.4: The blue shift of the ν1 peak in the presence of three different cations as a
function of (a) ionic strength and (b) cation concentration.

nitrate [59]. In this work, the effect of Cl− ions was studied by introducing NaCl to a 2

m solution of sodium nitrate in water (Exp. 4 in Table 4.2). The nitrate concentration was

kept constant and the blue shift was quantified as a function of the added NaCl salt. The

addition of the salt, which contributes to an increase in ionic strength, produced a shift in

the nitrate peak, shown in Figure 4.5. The shift was similar to that observed in the control

experiment (Exp. 1) initially, but became more prominent in the presence of Cl− ions at

greater ionic strengths. This indicates that the anion may also play a role in determining

the extent of the shift, especially at higher concentrations, i.e. when CIP and CIA are more

likely to occur. Figure 4.6 shows the relative areas (xA,j = Aj/
∑

j Aj) of each subpeak

as a function of I . The difference between the two systems is visible here too: while both

overlap initially, the SIP decreases more significantly at higher concentrations when NaCl

is present, while the CIP and CIA increase.
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Figure 4.5: The blue shift of the main peak of the nitrate anion as a function of ionic
strength, I , which is equal to cation and anion concentration in these experiments.

Figure 4.6: The relative fractions, xA, of the subpeak areas associated with each type of
ionic interaction in Exps. 1 and 4.

Influence of Polyatomic Oxyanions

Four sodium salts are of most interest for Hanford low activity waste: Na2SO4 due to

potential salt accumulation during vitrification [16], NaNO2 and NaNO3 due to their abun-

dance, and Na2CO3 due to its abundance and its spectroscopic proximity to the nitrate peak

[65, 11, 29, 33]. Additional polyatomic species present in the waste include phosphate,

oxalate, aluminate, acetate, chromate, etc [65]. In this section, binary systems with 2 m

nitrate plus another sodium salt (nitrite, carbonate, sulfate and phosphate) were studied

initially, followed by ternary systems (sodium nitrate and two other salts). Lastly, Exps.
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13–15 simulate more complex mixtures by incorporating many of the major and minor salt

components that are present in low-activity waste.

Figure 4.7 shows the position of the peak maximum as a function of the total ionic

strength, I , the concentration of anions, C−, and the concentration of cations, C+, for the

binary systems. The shift is present in each binary system; however, the extent of peak shift

is difficult to predict based on measurements of the ionic strength and anion concentration.

The cation concentration in each system seems to be an important factor, indicating that

the interactions between the sodium and nitrate are strongly affecting the extent of peak

shifting.

Figure 4.7: The extent of blue shift in the binary systems plotted against (a) the ionic
strength, I , (b) the concentration of anions, C−, and (c) the concentration of the cation,
C+. The sodium nitrate system is included in the comparison, as a reference.

Figure 4.8 shows the relative areas xA,j for each type of interaction, given as a function of

the cation concentration of the solutions. The blue shift of nitrate is due to a reduction of

the areas of the subpeaks related to simpler interactions (CPW, SNA, and SIP), while those

of the more complex interactions (CIP and CIA) increase.

When comparing the binary systems, minor differences related to SIP, CIP, and CIA

interactions can be observed, except for the carbonate system which shows more signifi-
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cant deviations in the CIP and CIA plots. The CIA interactions for this system seem to be

negligible, except for the last point, while the CIP interactions are more significant com-

pared to the other experiments for the same cation concentration. The explanation for this

behavior relates to the main Raman peak of carbonate, which overlaps with that of nitrate

[66]. In order to study the blue shifting of nitrate, the spectra were preprocessed to estimate

and subtract the carbonate peak’s contribution to the region between 1020 and 1080 cm−1.

The preprocessing was performed using reference spectra of the five nitrate subpeaks and

carbonate combined with blind source separation techniques, which were developed in our

previous work [33]. An example of the subtraction is shown in Figure 4.9. Due to the

overlap between nitrate and carbonate, especially with the rightmost subpeak (CIA interac-

tions), the carbonate may interfere with the estimates of the total nitrate and its distribution

in Figure 4.8.

Figure 4.8: The relative areas of the subpeaks, xA, indicate the type of ionic interactions
prevailing in each binary system.

Finally, we also looked at variations of the total peak area and maximum intensity in

the binary systems, which may not be captured by the relative variations of the subpeaks.

Figure 4.10 shows the variation of the nitrate peak area and intensity. Overall, each binary

system exhibits diminishing values for the areas and heights, with those of the nitrate-nitrite
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Figure 4.9: Subtraction of the carbonate contribution using blind source separation [33].

system showing the greatest reductions. Considering that the overall subpeak trend involves

increase in CIP and CIA interactions at the expense of SIP interactions, the shifting may be

accompanied by a decrease in overall peak intensity due to the variations in Raman activity

of the different subpeaks. The behavior of the reference system (sodium nitrate in water)

also showed a drop in the peak area and intensity, when scaled with its concentration to

account for the salt additions to the solution (see Figure 4.11). The decrease in both the

area and height indicates that the system behaves nonlinearly. As mentioned previously, the

nonlinear behavior associated with a blue shift and drop in intensity may lead to inaccurate

estimates of the composition of the waste using linear spectra-to-composition chemometric

models.

Next, the blue shift in ternary systems consisting of sodium nitrate plus two other salts was

studied (Exps. 9 to 12 in Table 4.2). The nitrate-nitrite pair was studied in three of the

experiments, since previous work indicated a correlation between the nitrite addition and
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Figure 4.10: Change in (left) total area of the ν1 peak of nitrate and (right) maximum height
of the nitrate peak as a function of the cation concentration.

Figure 4.11: Change in (left) total area of the ν1 peak of nitrate and (right) maximum height
of the nitrate peak as a function of the cation concentration. The values were scaled by the
concentration of nitrate at each point, to account for the nitrate salt additions to the solution.

nitrate peak shift [40]. Figure 4.12 shows the extent of the nitrate peak shift. Similarly

to the binary systems, the cation concentration provided the best estimate for the extent of

peak shifting in all systems. For Exp. 11 (sodium nitrate, sulfate and carbonate), the nitrate

shifting behavior was accompanied by a decrease in intensity for not only the nitrate but
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also for the sulfate peak. The subpeaks for the ternary system are plotted in Figure 4.13.

Figure 4.12: The extent of blue shift in the ternary systems plotted against (a) the ionic
strength, I , (b) the concentration of anions, C−, and (c) the concentration of the cation,
C+. The sodium nitrate system is included in the comparison, as a reference.

Figure 4.13: The relative areas of the subpeaks, xA, indicate the type of ionic interactions
prevailing in each ternary system.

Lastly, we analyzed the LAW simulants from our previous work, which included a training

data set for a blind source separation - partial least squares regression model consisting of

NaNO3, Na2SO4, NaNO2 and Na2CO3 (Exp. 13), and a test data set for the same model

consisting of NaNO3, Na2SO4, NaNO2, Na2CO3, Na3PO4, NaCH3COO and Na2C2O4
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(Exp. 14) [33]. In our previous work, shown in Chapter 3, the blind source separation

model identified an additional peak, which correlated with a reference spectrum of nitrate,

but also exhibited a blue shift [33, 67, 40]. Figure 4.14 shows that a nitrate shift does occur

in the LAW training and test simulants. The shift is not as pronounced as that in the sodium

nitrate reference system in Exp. 1 (the simulant systems also do not reach the same levels

of ionic strength and concentration as the reference system). Similarly to the binary and

ternary experiments, the cation concentration seems to predict the extent of peak shifting

in the system; however as the concentration increases, the extent of shifting in the complex

solutions becomes slightly less pronounced than that in the reference case.

We also analyzed the low-activity waste feed simulants prepared by Savannah River

National Laboratory (SRNL) that contain many species (Na+, NO−
3 , NO−

2 , CO2−
3 , OH−,

Al(OH)−4 , K+, SO2−
4 , Cl−, PO3−

4 , CrO2−
4 , C2O2−

4 , F− and total organic carbon (TOC)

species) [29]. The simulants provide the best estimate for the waste at Hanford, with both

the chemical (number and concentration of species) and physical properties (density and

high pH) matching those of the waste. The extent of the nitrate peak shift for the simulants

is also shown in Figure 4.14. The ion concentrations and ionic strength of the solutions

were estimated using inductively coupled plasma (ICP) measurements provided by SRNL

for some of the species and values from gravimetric analysis for the remaining species

[29]. Figure 4.14 shows that while peak shifting can be observed for the low-activity waste

samples, the extent of shifting as a function of the cation concentration is not as high as the

shift in the reference case. Note that the low-activity waste contains a small amount of K+

ions in addition to the large amount of Na+ ions [29]. The subpeak areas associated with

Figure 4.14 are shown in Figure 4.15.
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Figure 4.14: The extent of blue shift in the simulants, including LAW train (NaNO3,
Na2SO4, NaNO2 and Na2CO3), LAW test (NaNO3, Na2SO4, NaNO2, Na2CO3, Na3PO4,
NaCH3COO and Na2C2O4) and LAW complete feed (Na+, NO−

3 , NO−
2 , CO2−

3 , OH−,
Al(OH)−4 , K+, SO2−

4 , Cl−, PO3−
4 , CrO2−

4 , C2O2−
4 , F− and total organic carbon (TOC)

species at pH > 13) plotted against (a) the ionic strength, I , (b) the concentration of
anions, C−, and (c) the concentration of the cation, C+. The sodium nitrate system is in-
cluded in the comparison, as a reference.

Figure 4.15: The relative areas of the subpeaks, xA, indicate the type of ionic interactions
prevailing in each LAW system.

4.5 Conclusions

Quantification of the composition of multicomponent mixtures is of great importance for

the stabilization of low-activity radioactive waste at Hanford, and for other processes that

involve complex salt mixtures, such as desalination, mining, and wastewater treatment. Ra-

man spectroscopy is an established technique that can be used to measure the composition

of the waste in real time. However, the development of spectra-to-composition models
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depends on the complexity of the waste.

In this work, we have studied the phenomena of blue shift of the ν1 Raman peak of

nitrate in salt solutions of increasing complexity. The extent of peak shift was related to the

ion association and subpeaks were assigned for each ion interaction.

Each system we examined exhibited a shift in the ν1 peak of nitrate. The shift occurred

with increases in nitrate concentration in solutions containing only that species, and the

behavior was also observed in mixtures simulating the liquid low-activity waste at Hanford.

For all solutions, the cation concentration was found to be a good indicator of the extent of

the blue shift, while the shift did not always show a singular dependence on ionic strength.

The observed shift in the ν1 peak associated with the nitrate ion is an indicator that the

systems used to simulate Hanford solutions cannot be described with a linear chemometrics

model if only a single nitrate spectrum is considered. Improvement in a chemometric model

can be obtained by reinforcing training data with reference spectra of the nitrate subpeaks,

whose behavior corresponds to different ionic interactions occurring in the system.

The present work contributes to bridging the gap between complexities of ion asso-

ciation and the design of training data sets for development of chemometrics models. In

particular, the results from this work show that nonlinear phenomena stemming from inter-

actions among various ions in solution can help resolve discrepancies in spectroscopic data

and lead to a more efficient design of experiments that target regions where nonlinearities

and deviations from ideal behavior become important.
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CHAPTER 5

EXPANSION OF IN-SITU MONITORING AND DATA-DRIVEN MODELING

ACROSS MULTIPLE DFLAW SAMPLING LOCATIONS1

5.1 Introduction

In order to facilitate direct feed low activity waste (DFLAW) processing, extensive sam-

pling is planned, both to gain process knowledge and to satisfy regulatory requirements

[11]. The real-time in-line monitoring (RTIM) program seeks to identify process ana-

lytical technology (in-line instruments) to reduce or replace offline sampling. RTIM can

reduce the hazards associated with sample collection and improve plant operations. The

potential utility of in-line infrared and Raman spectroscopy probes in measuring the liquid

low-activity waste feed has been the focus of the work presented in Chapters 2 and 3.

Groups at Pacific Northwest National Laboratory and Los Alamos National Laboratory

are also working on RTIM instruments, such as Raman spectroscopy and laser-induced

breakdown spectroscopy (LIBS) [34]. In order to evaluate the RTIM instruments, simu-

lants that represent various DFLAW sampling locations were developed by Savannah River

National Laboratory, using information on the LAW feed, melter feed and effluent man-

agement facility [29]. An overview of potential sampling locations for RTIM is shown in

Figure 5.1. Note that the program has identified multiple locations for monitoring of the

waste, in addition to the LAW feed sampling location that was introduced previously in

Chapters 2 and 3.

1Adapted from ”S. Kocevska, S. Crouse, R. Prasad, G. M. Maggioni, M. A. Grover and R. W. Rousseau,
“Measuring Liquid Low Activity Waste Simulants with Process Analytical Technology: Real-Time In-Line
Monitoring at Hanford,” in Proceedings of the Waste Management Symposia, 2022.” [68]
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Figure 5.1: Proposed RTIM sampling locations: AP holding tank for low activity waste
(LAW) feed, CRV or concentrate receipt vessel, EMF recycle, which contains the effluent
management facility recycled waste from the evaporator concentrate vessel or ECV, MFPV
or melter feed prep vessel where the glass forming chemicals are added, followed by the
MFV (melter feed vessel) [7].

5.2 Methods

The IR absorbance and Raman intensity of DFLAW simulants were measured with in-line

molecular spectroscopy probes (infrared and Raman spectroscopy, respectively).

5.2.1 In-line spectroscopy

In-line infrared (attenuated total reflectance – Fourier transform IR or ATR-FTIR) and Ra-

man spectroscopy were used simultaneously to collect spectra of anion species in the sim-

ulated waste. In previous chapters, both techniques were used to collect spectra of liquid

simulants. In this contribution, some of the samples include slurry waste, in which case

the intensity of the Raman measurements is affected by the presence of solids, while ATR-

FTIR spectroscopy can measure the solute absorbance in slurry samples, with negligible

interference due to higher solids content. The depth of penetration of the evanescent wave

is small for ATR, such that only the signal of the material in direct contact with the probe

can be measured, which is mostly the liquid phase [69, 70]. The spectral measurements of

the DFLAW simulants using both ATR-FTIR and Raman probes are shown in Figure 5.2.
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Figure 5.2: Normalized spectra of the DFLAW simulants for a) ATR-FTIR spectroscopy
and b) Raman spectroscopy, measured at 20°C for the CRV sample and 25°C for the re-
maining samples.

5.2.2 Blind source separation – partial least squares regression (BSS – PLSR) modeling

The training data set from from Chapter 2 was reused for this work (Table 2.1). To generate

the test data sets, data points for the LAW and CRV samples were added to the preexist-

ing test data set from Chapter 3 (Table 3.1). In the current work, blind source separation

is used as a preprocessing step, to identify the independent components in the mixture

spectra, which can then be classified as target or non-target species. Based on this clas-

sification, we isolated the signals of target species, so they can be quantified without the

interference from the minor (non-target) signals. While in our previous work (discussed in

Chapter 3) the contributions of the non-target species were calculated and subtracted from

the original spectra (subtraction-based approach), here we also compare a new approach of

calculating the contributions of the target species directly from the original spectra (target-

based approach). An overview of the steps with an emphasis of the differences between the

subtraction-based approach and target-based approach is presented in Figure 5.3.

Once the blind source separation steps are completed, the anion concentrations are

calculated using a partial least-squares regression model. The development of the blind

source separation – partial least squares regression (BSS – PLSR) framework was described
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Figure 5.3: Blind source separation (BSS) framework, showcasing the difference between
a subtraction-based approach (developed in our previous work in Chapter 3) and a target-
based approach introduced in the current work.

in more detail in Chapter 3.

5.3 Results and Discussion

The anion concentrations of nitrate, nitrite and sulfate were calculated with a partial least

squares regression (PLSR) model, using spectra preprocessed with blind source separation

(BSS). The BSS-PLSR approach was compared to quantification of the species using a

PLSR model without BSS preprocessing. The results from each model were compared to

the anion concentrations quantified with offline ion chromatography (IC) at Savannah River

National Laboratory, shown in Table 5.1. Since the IC analysis does not include carbonate

and water, the focus in this chapter will be the quantification of the species reported in

Table 5.1 (even though the carbonate and water concentrations were predicted by the PLSR

and BSS-PLSR models).

5.3.1 Low activity waste (LAW) feed simulant

The LAW feed simulant includes the following molecular species: nitrate, nitrite, car-

bonate, hydroxide, aluminate, sulfate, phosphate, citrate, formate, acetate, chromate and

oxalate. As discussed in Chapter 3, the BSS-PLSR model was developed with a simplified
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Table 5.1: Target species concentrations in mol/L, quantified with ion chromatography (IC)
at SRNL.

Sample ID Nitrate Nitrite Sulfate

LAW-1 2.07 0.98 0.04
LAW-6 1.82 1.07 0.05
CRV-1 1.46 0.61 0.05

LAW feed simulant, consisting of nitrate, nitrite, sulfate, carbonate and water as the target

species and phosphate, acetate and oxalate as the non-target species. The training data for

the PLSR model included the following concentration ranges: 0 – 1.32 mol/L for nitrate, 0

– 1.17 mol/L for nitrite, 0 – 0.19 mol/L for sulfate, 0 – 0.57 mol/L for carbonate and 42.5 –

55.5 mol/L for water. While the LAW feed simulant samples are more complex compared

to the simulants used to develop the BSS-PLSR framework, since both systems contain

the target species (nitrate, nitrite and sulfate), it was assumed the model can quantify their

concentrations in the LAW simulants (LAW-1 and LAW-6).

However, the training data set may need to be updated with new measurements to ac-

count for the nitrate concentrations in the LAW samples, which are currently out of range

from the concentrations used to train the PLSR model. In addition, the LAW simulants

have a caustic pH (due to the presence of NaOH), while the pH in the training data for the

PLSR model and BSS-PLSR framework was not adjusted. The potential pH effect on the

spectral measurements of LAW mixtures needs to be studied further. Finally, since the car-

bonate concentration was not measured with IC, as shown in Table 5.1, the quantification

of carbonate was not included in this work. However, since carbonate was included in the

training data, the BSS-PLSR model generated concentration predictions for carbonate as

well.

ATR-FTIR Spectroscopy

ATR-FTIR results using the previously developed BSS-PLSR model (subtraction-based

approach used in BSS and first-order derivative spectra used in PLSR) are shown in Fig-
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ure 5.4. Note that Figure 5.4 shows the results for the original test data set from Chapter

3, plus the additional data points for LAW-1 and LAW-6. The nitrate and nitrite concentra-

tions for the additional LAW-1 and LAW-6 samples were outside ±20% prediction errors,

which are based on the uncertainty at the Hanford analytical laboratory [11]. Next, the

target-based approach was implemented in BSS-preprocessing, since we can identify the

target sources with greater certainty than the non-targets, especially for the more compli-

cated LAW-1 and LAW-6 samples. The results for the target-based approach, while using

first-order derivative spectra in PLSR, are shown in Figure 5.5. The target-based approach

was also tested with second-order derivative spectra in the PLSR model, which further

improved the nitrite predictions, as shown in Figure 5.6. The nitrate prediction errors re-

mained high, perhaps because the nitrate concentrations in the LAW-1 and LAW-6 are

outside the range covered in the PLSR training data.

Figure 5.4: ATR-FTIR analysis for LAW feed: a) BSS-preprocessing (using a subtraction-
based approach) comparing the original spectra (blue) with the preprocessed spectra (red);
b) PLSR parity plot (using first-order derivative spectra) comparing the measured and
model-predicted concentrations. The dashed lines indicate the ±20% error deviations,
which are based on the uncertainty at the Hanford analytical laboratory.

Raman Spectroscopy

Raman results using the previously developed BSS-PLSR model (subtraction-based ap-

proach used in BSS and first-order derivative spectra used in PLSR) are shown in Fig-
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Figure 5.5: ATR-FTIR analysis for LAW feed: a) BSS-preprocessing (using a target-based
approach) comparing the original spectra (blue) with the preprocessed spectra (red); b)
PLSR parity plot (using first-order derivative spectra) comparing the measured and model-
predicted concentrations. The dashed lines indicate the ±20% error deviations, which are
based on the uncertainty at the Hanford analytical laboratory.

Figure 5.6: ATR-FTIR analysis for LAW feed: a) BSS-preprocessing (using a target-based
approach) comparing the original spectra (blue) with the preprocessed spectra (red); b)
PLSR parity plot (using second-order derivative spectra) comparing the measured and
model-predicted concentrations. The dashed lines indicate the ±20% error deviations,
which are based on the uncertainty at the Hanford analytical laboratory.

ure 5.7. Note that once again Figure 5.7 shows the results for the original test data set

from Chapter 3, plus the additional data points for LAW-1 and LAW-6. Similar to the

ATR-FTIR results, the LAW nitrate concentration is underestimated. The overall predic-

tion results were improved using the target-based approach with a first-order derivative in

PLSR, as shown in Figure 5.8.
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Figure 5.7: Raman analysis for LAW feed: a) BSS-preprocessing (using a subtraction-
based approach) comparing the original spectra (blue) with the preprocessed spectra (red);
b) PLSR parity plot (using first-order derivative spectra) comparing the measured and
model-predicted concentrations. The dashed lines indicate the ±20% error deviations,
which are based on the uncertainty at the Hanford analytical laboratory.

Figure 5.8: Raman analysis for LAW feed: a) BSS-preprocessing (using a target-based
approach) comparing the original spectra (blue) with the preprocessed spectra (red); b)
PLSR parity plot (using first-order derivative spectra) comparing the measured and model-
predicted concentrations. The dashed lines indicate the ±20% errordeviations, which are
based on the uncertainty at the Hanford analytical laboratory.

5.3.2 Concentrate receipt vessel (CRV) simulant

The CRV simulant combines the LAW feed and EMF concentrate recycle, which is dis-

cussed in the next subsection. Despite the presence of solids, the ATR-FTIR probe mea-

sures the absorbance of the solution. The BSS-PLSR results using a target-based approach

are shown in Figure 5.9. To generate the results, the CRV data points were added to the
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model used in the previous section. The results indicate that the concentration predictions

for nitrate and nitrite were improved with BSS preprocessing. Note that the analysis of

the CRV sample using our previously developed training data is subject to the same limita-

tions as the LAW samples, including any potential pH effects and the extrapolation of the

concentration of nitrate (even though the measured IC concentration in the CRV sample is

closer to the maximum value in the training set compared to the LAW samples, it remains

out of range).

The Raman spectra of the CRV simulant were significantly impacted by the presence

of solids, which resulted in a drop of the measured intensity, as shown in Figure 5.10.

Therefore, the spectra were not used to quantify the concentrations of the target species.

Figure 5.9: ATR-FTIR analysis for CRV: a) BSS-preprocessing (using a target-based
approach) comparing the original spectra (blue) with the preprocessed spectra (red); b)
PLSR parity plot (using first-order derivative spectra) comparing the measured and model-
predicted concentrations. The dashed lines indicate the ±20% error deviations, which are
based on the uncertainty at the Hanford analytical laboratory.

5.3.3 Effluent management facility (EMF) simulants

The EMF feed contains nitrate, ammonium, sulfate, chromate, aluminate and phosphate.

The EMF concentrate vessel is based on the EMF simulant, assuming a 15-times turndown

in the EMF evaporator. While EMF sample spectra were collected for qualitative analyses,

the concentrations of the analytes have not been quantified in this work. Figure 2 a) shows
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Figure 5.10: Raman spectra for CRV: a) Raw spectra; b) Baseline-corrected spectra.

that only water is visible in the ATR-FTIR spectrum of the diluted EMF sample, while

additional peaks are present in the concentrated EMF sample. Figure 5.2 b) shows that the

peaks of nitrate and sulfate are still visible in the Raman EMF spectra, despite a decrease

in the measured intensity (resulting from the presence of solids in the sample).

5.4 Conclusions

In this work, ATR-FTIR and Raman probes were used to measure the spectroscopic sig-

nal of simulants associated with the direct feed low activity waste (DFLAW) process, in-

cluding the low activity waste (LAW) feed, concentrate receipt vessel (CRV) and effluent

management facility (EMF) simulants. While the EMF simulant measurements remained

qualitative, the spectra measured from LAW and CRV samples were used in a quantitative

analysis to predict the concentrations of nitrate, nitrite and sulfate in the simulated waste.

The present work shows that in-line spectroscopy probes, such as infrared and Raman,

may be a suitable replacement and/or addition for offline sampling in the DFLAW process,

to facilitate continuous waste processing and immobilization. While either probe could be

used to measure the spectra of liquid simulants (LAW feed), the ATR-FTIR probe is more

suitable for measuring the solution absorbance in the presence of solids (CRV).

The BSS-PLSR model approach developed in our previous work using a simplified

88



simulant system was of assistance in analyzing the target species (nitrate, nitrite and sulfate)

in more complex DFLAW simulants, including the LAW feed and CRV. In the present

work, the BSS-PLSR model was improved by incorporating a target-based approach to

preprocessing the mixture spectra. The BSS-PLSR model can be further improved by

expanding the training range for the nitrate concentration and studying the pH effect on

the spectral measurements. Work in this paper shows that the BSS-PLSR model can be

incorporated across multiple sampling locations (such as LAW and CRV) to quantify target

species, despite changes in the non-target composition of the unknown mixtures.
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CHAPTER 6

IR SPECTROSCOPY MONITORING COUPLED WITH MACHINE LEARNING

FOR DEFENSE WASTE PROCESSING FACILITY (DWPF) APPLICATIONS AT

THE SAVANNAH RIVER SITE1

6.1 Introduction

Unlike the Hanford site which is preparing to begin waste processing, the Savannah River

Site (SRS) has been operational since 1996. The site operates the Defense Waste Processing

Facility (DWPF), which processes and vitrifies high-level waste into borosilicate glass [71,

72, 73, 74, 75]. Approximately 35 million gallons of high-level radioactive waste remain

to be stabilized into a borosilicate glass form.

The DWPF operates multiple batch processes and generates a continuous output. As

part of the DWPF, sludge batch waste from the tank farm is fed into the Sludge Receipt and

Adjustment Tank (SRAT). The sludge waste contains insoluble solids, including long-lived

radionuclides which need to be vitrified. The waste at SRS also contains mercury, which

adds further complexity to the treatment process. In addition to the sludge waste, the SRAT

batch also receives effluent waste from the Salt Waste Processing Facility (SWPF). Note

that at SRS, the low-activity waste is grouted and not vitrified, so there are two facilities

that process waste (DWPF for high-level waste vitrification and SWPF for low-level waste

grouting).

For DWPF, the key batch processing steps occur in the Sludge Receipt and Adjustment

Tank (SRAT) and Slurry Mix Evaporator (SME). A simplified process flowsheet for the

DWPF is shown in Figure 6.1. During SRAT processing, nitric and glycolic acid are fed

1This work was produced by Battelle Savannah River Alliance, LLC under Contract No.
89303321CEM000080 with the U.S. Department of Energy. Publisher acknowledges the U.S. Government
license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).
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to the batch (following the nitric-glycolic acid flowsheet [72]), to neutralize the alkaline

sludge waste and reduce the mercury (HgO → Hg0). The process is operated at boiling

temperatures to strip the mercury. The next batch process occurs in the Slurry Mix Evap-

orator (SME), where the water is evaporated to concentrate the waste (dewatering) and

frit (glass formers) are added to make the melter feed. During batch processing, the heels

from previous batches are incorporated in the new batch, which results in variations in the

compositions of various species.

The work presented in this chapter is focused on the potential for real-time monitor-

ing of the SRAT and SME cycles using in-situ ATR-FTIR spectroscopy. The simulated

high-level waste is a challenging system to monitor. The pH of the system varies from

4 to 13 (starting with a caustic solution, the pH decreases as the nitric and glycolic acid

are introduced). The SRAT and SME cycles also span changes in temperature, reaching

boiling temperatures during mercury stripping. The species concentrations change during

the process due to ongoing reactions, such as mercury reduction and nitrite conversion to

nitrate. Another complication associated with the sludge batch waste is the high solids con-

tent, which reaches 15 wt% (reported as total solids, which do not dissolve at 110◦C). Due

to the high solids content, the sludge waste is probed with ATR-FTIR spectroscopy, which

measures the absorbance of the liquid solution, even in the presence of suspended solids.

The work in this chapter is focused on detection and monitoring of the anionic species,

discussed in more detail in the next section.

6.2 Materials and Methods

6.2.1 Overview of the waste

In preparation for processing of Sludge Batch (SB) 10, SRNL has performed flowsheet

testing with nonradioactive simulants to understand the chemistry for the SB 10 campaign

[75]. The physical and chemical composition of a representative sludge simulant is shown

in Table 6.1. In addition to the ionic species, the simulant also contains the following solids:
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Figure 6.1: Simplified flowsheet for Direct Waste Processing Facility (DWPF) processing
[71].

Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, S, Si, Zn, and Zr [75].

During SRAT and SME processing, the simulated waste from Table 6.1 is used as

the starting point. The simulant which represents the final point (i.e. the SRAT/SME

product slurry) is shown in Table 6.2, focusing on the anionic species. The target anion

species in the SRAT and SME waste include nitrate (NO−
3 ), nitrite (NO−

2 ) and glycolate

(HOCH2CO2
−), whose concentrations are expected to change during processing. Other
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Table 6.1: Tank 40 sludge waste nonradioactive simulant composition, reported by Wood-
ham and co-workers [75]. The wt% total solids (TS) represents the solids that do not
dissolve after heating to 110◦C, while the wt% insoluble solids (IS) represents the differ-
ence between the measured total solids and dissolved solids.

Tank 40
Parameter Target Measured

wt% Insoluble Solids (IS) 9.45 8.39
wt% Total Solids (TS) 14.49 13.90
Slurry Density (g/mL) - 1.1102

Supernatant Density (g/mL) - 1.0477
Na+ ([M] supernatant) 9.48E-01 1.01

HCO−
2 ([M] supernatant) - <2.22E-03

Cl− ([M] supernatant) 1.06E-03 <2.82E-03
NO−

2 ([M] supernatant) 2.30E-01 1.94E-01
NO−

3 ([M] supernatant) 1.21E-01 1.19E-01
SO2−

4 ([M] supernatant) 1.64E-02 1.37E-02
C2O2−

4 ([M] supernatant) 1.04E-02 7.00E-03
PO3−

4 ([M] supernatant) 3.69E-04 <1.05E-03
OH− ([M] supernatant) 3.73E-01 2.19E-01
CO2−

3 ([M] supernatant) 5.66E-02 3.61E-02

species of interest include formate and oxalate, which may be produced as side products.

The key anion conversions that may occur during the SRAT and SME processes include

nitrite destruction, nitrite-to-nitrate conversion, glycolate destruction, glycolate-to-formate

conversion and glycolate-to-oxalate conversion [75]. Detailed information on the expected

anion conversions and limiting factors is provided by Woodham and coworkers [75]. Typ-

ically, the anion concentrations are quantified with IC which is associated with approxi-

mately 10% uncertainty and long waiting times on the order of days. The goal of this work

is to show a proof of concept regarding measurement of target species in real time using

ATR-FTIR spectroscopy.

6.2.2 Design of Experiments

In order to evaluate if ATR-FTIR spectroscopy is suitable for measurement of the sludge

waste, an experiment simulating the SRAT and SME cycles was performed in a 2-L Mettler

Toledo Reaction Calorimeter (RC1) vessel equipped with temperature, pH and ATR-FTIR
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Table 6.2: Ion composition in the nonradiaoctive simulated Tank 40-8 SRAT/SME product
slurry, reported by Woodham and co-workers [75].

Tank 40-8
Parameter [M] slurry

HCO−
2 1.7E-02

Cl− 3.70E-03
NO−

2 <2.48E-03
NO−

3 1.07E+00
PO3−

4 <1.20E-02
SO2−

4 1.75E-02
C2O2−

4 9.06E-01
HOCH2CO2

− 9.06E-01
CO2−

3 <6.66E-03
NH4

+ <2.77E-03

probes. The main SRAT and SME steps are summarized in Figure 6.2. The anion con-

centrations measured offline with IC are summarized in Table 6.3. The RC1 experimental

set-up was used to collect the training data, which were designed based on the anion con-

centrations in the sludge simulant (Table 6.1) and SRAT/SME product (Table 6.2). The

concentrations associated with the training data are shown in Table 6.4.

Figure 6.2: Steps for the SRAT/SME cycle to be monitored with ATR-FTIR spectroscopy
[75].

6.3 Results and Discussion

The first step to evaluating the feasibility of ATR-FTIR for monitoring of the slurry waste

was to collect reference spectra measurements. While nitrate, nitrite and glycolate rep-
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Table 6.3: Anion composition measured by IC for a nonradioactive lab run of SRAT/SME
in the RC1 experimental set-up. The samples match the steps in Figure 6.2.

Sample Time point NO−
3 [M] NO−

2 [M] HOCH2CO2
− [M]

1 Sludge at 93◦C 0.16 0.18 0.00
2 Post nitric acid addition 0.79 0.15 0.00
3 Post glycolic acid addition 0.79 0.03 0.59
4 Post dewater 1.28 0.00 0.82
5 Post reflux 1.43 0.00 0.86

Table 6.4: Training data set for the target anion species and solvent (water).

Sample NO−
3 [M] NO−

2 [M] HOCH2CO2
− [M] H2O [M]

1 0.00 0.00 0.00 55.49
2 0.95 0.00 0.00 51.03
3 0.00 0.28 0.00 54.42
4 0.00 0.00 0.79 51.17
5 0.14 0.04 0.81 50.28
6 0.88 0.26 0.75 46.28
7 0.95 0.05 0.00 50.82
8 0.16 0.30 0.00 53.60

resent the target species for the slurry, in this step, the data collection also included the

remaining anion species. The reference data collected at room temperature are shown in

Figure 6.3. While all the species have characteristic IR peaks, the target species seem to

be highly IR-active, while some of the non-target species have weak IR signals, such as

oxalate and formate. The spectra shown in Figure 6.3 were collected at concentrations

similar to those expected in the simulants. In cases where the concentrations in the simu-

lants did not produce any signal (oxalate, formate, phosphate, sulfate), the concentrations

were increased until visible peaks were observed. Since these species do not exhibit high

concentrations in the waste, it is possible that they will not interfere with the signals of the

targets significantly. However, many of the non-target signals overlap with target peaks, es-

pecially with glycolate and nitrate. In addition, since the species concentrations vary during

the SRAT/SME cycles (due to the batch heels and ongoing reactions and conversions), it

is important to collect all pertinent information of the system, in case the signals of the
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non-target species are higher than expected and require preprocessing to be removed.

Figure 6.3: Reference spectra of anion species found in the DWPF waste during
SRAT/SME cycling. The spectra were collected at room temperature, with concentrations
similar to those expected in the simulants.

In the previous chapters, we worked with isothermal systems. However, the temper-

ature during DWPF processing reaches boiling temperature and the key measurements

during real testing are performed near boiling temperatures (approximately 93◦C). The

reference spectra of nitrate indicate that the peak shape is temperature-dependent, shown

in Figure 6.4. Since the key measurements during DWPF occur at a constant temperature

of 93◦C, the training data for the system were collected at near-boiling temperatures, to re-

move any spectral changes associated with temperature changes. The training data for the

system are shown in Figure 6.5 (a). The test data, shown in Figure 6.5 (b), were collected

during one full run of the SRAT/SME simulation. Additional data will be collected in the

future and incorporated in the models.

Similar to our previous work from Chapter 5, the blind source separation model was

”target-based” (refer to Figure 5.3). The reasoning to apply target-based BSS is our lack of

knowledge of the non-target species in the system. While we have an idea of the species

and levels of concentrations of the non-target components, their chemistry has not been

fully elucidated. There also may be additional non-target species that need to be studied in

detail, such as MnO or HgO. However, we do have a database of the target species (nitrate,
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Figure 6.4: Comparison of the nitrate spectra at different temperatures.

Figure 6.5: (a) Training data associated with Table 6.4; (b) Test data associated with Ta-
ble 6.3.

nitrite and glycolate), therefore estimating the target contributions directly from the sources

which correlated with the target library should introduce less uncertainty to the process.

The corresponding BSS sources which correlated with the target library are shown in

Figure 6.6. The results indicate that the target sources were identified with high certainty,

considering the values for the correlation coefficients.

The BSS model also identified a source for the non-target species, whose contribution

was not included in the BSS-preprocessed data (see Figure 6.7). The non-target source is

active in the 1400-1600 cm−1 region, and also has a raised baseline in the 1600-1800 cm−1
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Figure 6.6: (a) Library of reference spectra of the target species; (b) BSS sources which
correlated with the references.

region and a small peak around 1100cm−1. Based on the location of the peaks, the source

may include information from oxalate and sulfate.

Comparing the BSS-preprocessed spectra to the original data, shown in Figure 6.8 (a),

indicates that the BSS-preprocessing did not remove any significant peaks from the data.

The most apparent subtraction occurs in the nitrate/carbonate region, for one of the lower

concentration spectra. The parity plots comparing the concentration predictions for both

models are shown in Figure 6.8 (b). Both models seem to have predictions comparable

to the IC-measured concentrations. As discussed previously, the non-target species do not

have a major impact on the spectral measurements. However, the predictions of the species

98



Figure 6.7: BSS source which did not correlate with any of the reference spectra in the
target library.

can be further improved, especially for the high concentrations. Upon closer inspection,

we learned that the concentrated samples (post dewatering in the SRAT/SME cycle) have

higher concentrations than the upper range in the PLS training model, which needs to be

expanded. Our understanding of the kinetics in the system is also limited and more work

needs to be performed to map out possible reactions and conversions, along with their effect

on the spectral measurements. The future work is discussed in more detail in Chapter 7.

The predicted concentrations associated with each model are summarized in Table 6.5

and Table 6.6. Another depiction of the results is shown in Figure 6.9. The figure shows

the trends for the concentrations of nitrate, nitrite and glycolate, with an overall increase

in the nitrate and glycolate and a decrease in the nitrite. This work shows the potential for

real-time IR monitoring to map the reactions in the process.

6.4 Conclusions

The work in this chapter serves as a proof of concept on the use of ATR-FTIR spectroscopy

for in-line monitoring of slurry samples. The solid content for the SRAT/SME test run

reached 15 wt% (reported as total solids, which do not dissolve at 110◦C). This work in
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Figure 6.8: (a) Overlay of the spectra before and after BSS-preprocessing; (b) Parity plot
comparing the concentration predictions for a PLSR model (blue) and BSS-PLSR model
(red).

Figure 6.9: (a) Nitrate concentrations over time; (b) Nitrite concentrations over time; (c)
Glycolate concentrations over time.

this chapter is also an example of a successful implementation of ATR-FTIR monitoring at

near-boiling temperatures. As a result, the PLSR and BSS-PLSR models were built at near-

boiling temperatures (93◦C). The concentrations obtained with the constant-temperature

model were comparable to the matching concentrations from IC measurements. However,
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Table 6.5: Table of the concentration predictions using PLSR, matching the sample num-
bers for the IC measurements from Table 6.3.

Sample NO−
3 [M] NO−

2 [M] HOCH2CO2
− [M] H2O [M]

1 0.14 0.12 0.24 53.09
2 0.77 0.12 0.12 50.76
3 0.74 -0.02 0.54 49.12
4 1.25 -0.13 0.83 45.63
5 1.31 -0.15 0.74 45.87

Table 6.6: Table of the concentration predictions using BSS-PLSR, matching the sample
numbers for the IC measurements from Table 6.3.

Sample NO−
3 [M] NO−

2 [M] HOCH2CO2
− [M] H2O [M]

1 0.34 0.15 0.14 52.54
2 0.75 0.15 0.20 50.31
3 0.78 0.04 0.44 49.31
4 1.19 -0.08 0.71 46.33
5 1.21 -0.09 0.68 46.39

future monitoring may need to incorporate the temperature as a variable, to adjust for the

temperature change during the process, if the data are to be collected continuously during

the SRAT/SME cycles [17].

The concentrations of the target species (nitrate, nitrite and glycolate) were predicted

by both PLSR and BSS-PLSR. The non-target species do not seem to have a major effect

on the measurements, however detailed analysis of their limits of detection are needed to

proceed with the modeling of the cycle.

Overall, the results from this chapter are promising and show that ATR-FTIR can mea-

sure the change in concentration in the target species as the process is ongoing. This ca-

pability would make the process more efficient and reduce the need for offline sampling,

while clearly mapping out when reactions are completed.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

This thesis combines recent advances in machine learning with real-time data collection

using in-situ spectroscopy technology, to address the challenge associated with nuclear

waste remediation. While progress has been made towards the clean-up of nuclear waste,

the two sites discussed in this work contain a significant portion of the remaining nuclear

waste in the United States. The Hanford site in Washington State and the Savannah River

Site in South Carolina store a total of 91 million gallons of radioactive waste. The nuclear

waste poses an environmental threat to the surrounding areas, and storage tanks have leaked

radioactive waste in the past. In order to address this challenge, the waste will be processed

into a glass or grout form for stabilization. There are many unknowns associated with the

stabilization processes, which ultimately affect the stability of the final glass product. This

thesis aims to remove the barrier in real-time quantification of nonradioactive components

in the liquid low activity waste at Hanford, which pass through the vitrification plant during

the Direct Feed Low-Activity Waste (DFLAW) process. DFLAW is scheduled to begin

processing waste into glass in 2023. On the other hand, the Defense Waste Processing

Facility (DWPF) at the Savannah River Site has been processing high-level waste for many

years. This thesis also addresses the use of in-situ technology for monitoring of DWPF

waste, allowing for elucidation of the chemistry of the waste and faster sample turnaround

times using real-time information.

This thesis started with the design of a simplified mixture system that simulates the

process-relevant species in DFLAW waste. The goal of the initial work in Chapter 2

was to analyze the applicability of Raman and ATR-FTIR spectroscopy probes for nuclear
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waste monitoring. The nonradioactive, but process-relevant species of particular interest

for this project include nitrate, nitrite and sulfate. In this work, we developed a general

framework to study subsets of well-defined mixture systems, outlined in Figure 7.1. Var-

ious linear multivariate models were applied to extract the concentration of the species

from the spectroscopy data, including Classical Least-Squares Regression (CLSR), Inverse

Least-Squares Regression (ILSR), Partial Least-Squares Regression (PLSR) and Principal

Component Regression (PCR). We discovered that when one has a relatively well-defined

mixture with only a few components, the linear models are successful at predicting the

concentrations of the species for both IR and Raman spectroscopy.

Figure 7.1: Approach for a well-defined multicomponent mixture system, relying on design
of experiments and chemometric modeling.

However, the story changes as more species are introduced to the mixtures and the

collection of calibration data to retrain the models becomes the bottleneck in the process.

Depending upon the number of constituents, the size of the calibration set can be quite

large. In some cases, the mixtures may contain numerous species, but only a small subset

is central to the process for which quantification is being undertaken. For example, the nu-

clear waste at the Hanford site contains a large number of radioactive and non-radioactive

species, which complicates remediation efforts. However, only the concentrations of a few

target species (such as nitrate, nitrite and sulfate) may need to be quantified in real-time

to facilitate operation of the clean-up process. In Chapter 3, we introduced a preprocess-

ing procedure that reduces the need for extensive model calibration. The preprocessing

framework uses blind source separation (BSS) to identify the independent components in
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the mixture, which is followed by a correlation to classify them as either target species

(part of the critical quality attributes that need to be measured during waste processing) or

non-target species. The classification is used to preprocess the original mixture data: the

signals of the target components are retained, while those of the non-target components are

removed. Since the preprocessed spectra only contain the target components, the spectra-

to-concentration regression model can be trained with a smaller calibration set. The ap-

proach was tested for Raman and infrared spectroscopy using simulated and experimental

data sets based on simulant mixtures of the nuclear waste, summarized in Figure 7.2.

Figure 7.2: (a) BSS-PLSR framework applied to Hanford waste as part of DFLAW.

While the BSS-PLSR approach was successful at simplifying the spectroscopy data

before we reached the quantification step, challenges related to the linearity of the data

arose. In particular, the BSS model (which is linear) identified a separate source for a blue

shift of nitrate, indicating the presence of nonlinear phenomena in the mixtures.

Chapter 4 explores the nonlinear behavior associated with the nitrate anion, NO−
3 ,

which is present in abundance in low activity nuclear waste. We examine changes in the

main Raman peak of the nitrate anion in the presence of other ions. A wide range of

concentrations are covered, including those expected during direct-feed low-activity waste

(DFLAW) processing at the Hanford site. The experiments showed that the ions interact

and associate to form ion pairs, which results in a blue shift (i.e. a shift towards higher
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wavenumbers) in the main Raman peak of nitrate. The results indicate that cation concen-

tration is a better predictor of the peak shift, compared to ionic strength, both for binary

and multicomponent mixtures. These findings have direct implications on the development

of spectra-to-composition models for the DFLAW system, since they show deviations from

the linearity assumptions used in common chemometric models. An overview of the work

from Chapter 4 is shown in Figure 7.3.

Figure 7.3: Overview of the non-linear phenomena detected in low-activity waste simulants
and next steps for improvements in the models

The work up until Chapter 4 was centered around the low-activity waste feed for Direct

Feed-Low Activity Waste (DFLAW) processing. The next two chapters diverged from

this narrative to explore additional applications for in-situ monitoring. First, Chapter 5

extended beyond the feed, and the pre-developed modeling techniques were tested with

waste of varying compositions. The sampling location included vessels from the DFLAW

process, including the Concentrate Receipt Vessel (CRV), where the LAW feed meets the

effluent recycle. More complex LAW feed samples that represent the real simulated feed

with all the major and minor components were also quantified, taking the in-situ monitoring
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to the next level. The location of the sampling in DFLAW is shown in Figure 7.4.

Figure 7.4: DFLAW process section that contains multiple potential sampling locations.

The scenarios from Chapter 5 indicated that the previously developed tools can be ef-

fective in measuring additional wastes, but the training data for the target species should

still span the range of the expected concentrations. This work also showed that the ATR-

FTIR and Raman performance diverges when it comes to analyzing slurry samples, since

the Raman signal is diminished from the presence of suspended solids, while the ATR-

FTIR measurements were not affected. Chapter 6 explores potential applications for in-situ

ATR-FTIR probe deployment in the Savannah River Site (SRS) Defense Waste Processing

Facility (DWPF). ATR-FTIR could be useful in elucidating the chemistry of the DWPF, as

well as tracking reactions in real time and reducing the processing lag time associated with

grab sampling, as outlined in Figure 7.5. As part of this work, the IR probe was used to

track the concentrations of glycolate, nitrate and nitrite during a simulated run of the Sludge

Receipt and Adjustment Tanks (SRAT) and Slurry Mix Evaporator (SME) tank. This work

has the unique application to track the extent of reactions in the tanks, during the oxidation

and reduction steps. Previous applications of the IR and Raman probe monitoring at Han-

ford only involved monitoring of preexisting tank waste feeds. Even with a limited amount

of data points, the blind source separation and partial least-squares algorithms was able

to aid in the concentration calculations. The overall concentrations trends were consistent
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with the IC measurements.

This thesis was focused on developing data modeling frameworks that can improve the

flow of experimental design, data collection and data processing, putting an emphasis on

improving the robustness of data-driven models. The various applications of the modeling

tools developed in Chapters 2 and 3 showcase their versatility in analyzing multidimen-

sional data and classifying the components based on process relevance.

Figure 7.5: Application of real-time monitoring and data-driven modeling for the DWPF
process at SRS.

7.2 Future Directions

There are a few venues that could be explored as a continuation of the work presented in

this thesis.
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7.2.1 Future work with Blind Source Separation (BSS)

Uncertainty Quantification

The BSS-PLSR framework developed in Chapter 3 of the thesis proved useful for prepro-

cessing of liquid waste mixtures. However, it is important to understand the uncertainty

associated with the BSS-preprocessing and how it varies for the subtraction-based versus

the target-based implementation of the framework. In order to have a comparison study,

the confidence intervals for both BSS and PLSR should be quantified. The uncertainty

should also be quantified for PLSR models which have a full training data set and PLSR

models which omit the non-target species in the training data. These analyses would pro-

vide insight on the framework, and provide a means for comparison of the sources of error

for each method. The final step in the study should be an uncertainty analysis of the IC

data, which have served as the reference data for species measurements in this work, even

though the Hanford and SRNL sites have cited uncertainty levels of up to approximately

10% for the SRNL lab and 20% for the Hanford lab [75, 11].

Application of BSS to slurry samples in the Melter Feed Prep Vessel (MFPV)

The MFPV is the point of contact for the glass-forming chemicals (GFCs) and the low-

activity waste feed. However, preliminary work has shown that some of the GFC compo-

nents may dissolve in the feed. In order to eliminate any grab samples at this point, the

ATR-FTIR could be used to verify the composition of the feed before and after the GFCs

have been added. The ATR-FTIR information can be used to close the mass balance around

this vessel and ensure that the concentrations of the target species are within the acceptance

criteria and can be fed into the melter. This application also calls for introducing an ele-

mental probe, such as LIBS, to quantify the elemental composition of the glass formers to

ensure that the glass formulation would pass the acceptance criteria.

During the measurements the data would need to be evaluated and a processing ap-
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proach would need to be selected accordingly. One approach could involve understanding

which species are dissolving and quantifying their composition in the liquid phase with

ATR-FTIR. For this purpose, BSS could be used to remove the signal of the species other-

wise present in the liquid waste, especially if there is overlap.

However, if the interest lays in measuring the liquid waste species, despite the dissolu-

tion of any glass formers, then the opposite approach could be applied, where BSS is used

to remove the signals of the GFC species and the quantification of the process-relevant

species (such as nitrate) can proceed without the need to develop a new training data set

that incorporates the dissolving glass formers.

7.2.2 Understanding the nonlinear phenomena in the spectra and its implication on waste

quantification

Threshold for nonlinear phenomena during partial least-squares regression (PLSR) - Ex-

ploring Cover’s theorem for applications in nuclear waste monitoring

Cover’s theorem states that: ”A complex pattern-classification problem, cast in a high-

dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional

space, provided that the space is not densely populated [76].” A study that takes a closer

look at the behaviour of the nonlinearity as a function of the number of principal com-

ponents (or latent variables should be conducted), using the data from Chapter 4, which

showcase different levels of peak shifting.

7.2.3 Using ATR-FTIR to elucidate the chemistry during Defense Waste Processing at

SRS

The high-level waste at SRS goes through many reaction steps before it reaches the melter.

Since each sludge batch campaign is unique due to the varying composition of the waste,

the lab needs methods for understanding the chemistry during processing. The process is

especially complex since it involves mercury reduction and stripping. The first step towards
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tracking multiple species in real-time using ATR-FTIR spectroscopy involves developing

a database of the IR-active species from the waste. Next, their limits of detection need to

be quantified using IUPAC standards [77]. Understanding which species will be detected

during the process is important for model development and training. The number of species

that can be detected during the process will also influence the complexity of the spectra-to-

composition model. For example, the data in Chapter 6 did not show any prominent peaks

other than nitrate, nitrite and glycolate, however this hypothesis can only be confirmed

by calculating the detection limits. As shown in Figure 7.6, the mixture spectra during

SRAT/SME cycling change with the extent of the oxidation and reduction reactions, as well

as dewatering and refluxing. Instead of only measuring a few points during the process, the

ATR-FTIR probe can provide continuous process information that should be utilized.

Finally, if the limits of detection analysis confirms that most of the analytes are not

measurable in the waste, easy-to-use PLSR model development in the Mettler Toledo soft-

ware environment should be considered. However, since some of these species can appear

in the waste even if they were not anticipated, it may also be beneficial to have a more com-

plex algorithm, such as BSS-PLSR as an option. Another idea includes the development

of a graphical user interface (GUI) that would have the capability to display the species

concentrations from the spectroscopy data.
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Figure 7.6: Simulated high-level waste spectra during SRAT and SME cycling.
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APPENDIX A

PREDICTION ERRORS FOR BSS-PLSR

A.1 Prediction errors for Raman simulated data
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A.2 Prediction errors for ATR-FTIR simulated data

117



PL
SR

on
ly

B
SS

-P
L

SR

M
ix

tu
re

In
de

x
N

O
− 3

(%
)

N
O

− 2
(%

)
SO

2
−

4
(%

)
C

O
2
−

3
(%

)
H

2
O

(%
)

N
O

− 3
(%

)
N

O
− 2

(%
)

SO
2
−

4
(%

)
C

O
2
−

3
(%

)
H

2
O

(%
)

1
1.

0
8.

3
9.

3
2.

5
0.

0
4.

6
6.

1
9.

1
7.

5
0.

0
2

10
.1

6.
5

8.
6

38
.8

0.
0

0.
7

6.
9

11
.4

3.
5

0.
0

3
24

.0
36

.3
18

3.
2

49
.9

0.
0

9.
2

3.
0

11
.0

25
.2

0.
0

4
10

8.
2

12
9.

2
55

1.
4

94
.1

0.
0

2.
2

30
.8

27
.8

74
.1

0.
0

5
91

.4
12

1.
7

54
4.

0
13

.2
0.

0
21

.6
20

.9
25

.7
98

.2
0.

0
6

81
.1

98
.7

50
2.

3
45

.3
0.

0
2.

2
26

.7
24

.8
83

.7
0.

0
7

82
.2

91
.4

53
8.

6
55

.2
0.

0
2.

1
18

.7
30

.5
67

.0
0.

0
8

39
.8

30
.8

16
9.

2
27

.4
0.

0
12

.5
1.

1
4.

2
4.

8
0.

0
9

1.
6

9.
3

11
.3

12
.5

0.
0

5.
2

10
.3

13
.4

11
.2

0.
0

10
52

.1
9.

5
8.

5
11

5.
6

0.
0

0.
1

17
.2

9.
7

32
.2

0.
0

11
13

4.
3

12
0.

6
50

6.
2

44
.6

0.
0

7.
9

10
.3

17
.6

8.
2

0.
0

12
41

.5
45

.1
38

2.
3

38
.2

0.
0

12
.6

0.
4

22
.0

17
.1

0.
0

13
22

.0
28

.0
66

1.
8

25
.4

0.
0

3.
9

6.
0

73
.0

6.
9

0.
0

14
17

.7
42

.8
19

1.
0

33
.3

0.
0

3.
8

12
.7

16
.7

10
.8

0.
0

15
41

.6
41

.1
32

1.
5

28
.0

0.
0

5.
0

10
.2

36
.4

21
.3

0.
0

16
40

.3
46

.1
38

6.
5

72
.2

0.
0

11
.5

0.
8

21
.7

36
.8

0.
0

17
21

.4
0.

9
5.

1
35

.9
0.

0
1.

1
7.

6
31

.8
7.

4
0.

0
18

17
.0

30
.8

63
7.

1
36

.8
0.

0
0.

0
7.

6
60

.5
6.

4
0.

0
19

63
.3

63
.3

39
1.

6
15

.4
0.

0
0.

3
6.

1
19

.8
10

.9
0.

0
20

2.
5

7.
3

15
.3

3.
1

0.
0

3.
2

2.
3

54
.5

5.
2

0.
0

21
27

.1
81

.9
38

7.
7

65
.8

0.
0

1.
4

7.
8

17
.3

11
.2

0.
0

A
ve

ra
ge

43
.8

50
.0

30
5.

4
40

.6
0.

0
5.

3
10

.2
25

.7
26

.2
0.

0

Ta
bl

e
A

.4
:A

bs
ol

ut
e

va
lu

es
of

th
e

pe
rc

en
te

rr
or

s
fo

rt
he

si
m

ul
at

ed
IR

da
ta

se
tu

si
ng

a
1s

td
er

iv
at

iv
e

in
th

e
PL

SR
m

od
el

,w
ith

a
Sa

vi
tz

ky
-

G
ol

ay
fil

te
rw

ith
a

se
co

nd
or

de
rp

ol
yn

om
ia

la
nd

w
in

do
w

le
ng

th
si

ze
of

5.
R

es
ul

ts
fo

rt
he

or
ig

in
al

da
ta

ar
e

sh
ow

n
on

th
e

le
ft

,w
hi

le
re

su
lts

us
in

g
B

SS
-p

re
pr

oc
es

si
ng

ar
e

sh
ow

n
on

th
e

ri
gh

ts
id

e.
T

he
la

st
ro

w
sh

ow
s

th
e

av
er

ag
e

pe
rc

en
te

rr
or

fo
re

ac
h

sp
ec

ie
s.

118



A.3 Prediction errors for Raman experimental data
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A.4 Prediction errors for ATR-FTIR experimental data
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APPENDIX B

EXPERIMENTAL DATA FOR THE NITRATE SHIFT SYSTEM

B.1 Concentrations and spectra

The data files used in the analysis have been uploaded on GitHub:

https://github.com/skocevska/Nitrate-Shift-Data.

In addition, the molal concentrations for each experiment are shown in Table B.1 – Ta-

ble B.15. The spectra for each experiment are shown in Figure B.1 – Figure B.5.
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Table B.1: Molal concentrations for Exp. 1 from Table 4.2.

Exp. 1

Addition NaNO3

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]

1 0.68 0.68 0.68 0.68
2 1.35 1.35 1.35 1.35
3 2.70 2.70 2.70 2.70
4 4.06 4.06 4.06 4.06
5 5.41 5.41 5.41 5.41
6 6.76 6.76 6.76 6.76
7 8.11 8.11 8.11 8.11
8 9.47 9.46 9.47 9.46

Table B.2: Molal concentrations for Exp. 2 Table 4.2.

Exp. 2

Addition KNO3

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]

1 0.07 0.07 0.07 0.07
2 0.55 0.55 0.55 0.55
3 1.09 1.09 1.09 1.09
4 2.19 2.19 2.19 2.19
5 3.28 3.28 3.28 3.28

Table B.3: Molal concentrations for Exp. 3 from Table 4.2.

Exp. 3

Addition (AlNO3)3
[mol kg−1]

C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]

1 0.13 0.13 0.40 0.79
2 0.26 0.26 0.78 1.55
3 0.50 0.50 1.49 2.97
4 0.82 0.82 2.46 4.92
5 1.20 1.20 3.59 7.19
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Table B.4: Molal concentrations for Exp. 4 from Table 4.2.

Exp. 4

Addition NaNO3

[mol kg−1]
NaCl

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.02 0.00 2.02 2.02 2.02
2 2.02 0.08 2.10 2.10 2.10
3 2.02 0.42 2.44 2.44 2.44
4 2.02 0.85 2.86 2.86 2.86
5 2.02 1.70 3.72 3.72 3.72
6 2.02 3.24 5.26 5.26 5.26
7 2.02 4.78 6.80 6.80 6.80

Table B.5: Molal concentrations for Exp. 5 from Table 4.2.

Exp. 5

Addition NaNO3

[mol kg−1]
Na2SO4

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 2.03 2.03 2.03
2 2.03 0.03 2.09 2.06 2.12
3 2.03 0.10 2.22 2.13 2.32
4 2.03 0.99 4.01 3.02 5.00
5 2.03 1.79 5.61 3.82 7.40

Table B.6: Molal concentrations for Exp. 6 from Table 4.2.

Exp. 6

Addition NaNO3

[mol kg−1]
NaNO2

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 2.03 2.03 2.03
2 2.03 0.57 2.61 2.61 2.61
3 2.03 1.15 3.18 3.18 3.18
4 2.03 2.29 4.33 4.33 4.33
5 2.03 3.44 5.47 5.47 5.47
6 2.03 5.73 7.77 7.77 7.77
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Table B.7: Molal concentrations for Exp. 7 from Table 4.2.

Exp. 7

Addition NaNO3

[mol kg−1]
Na2CO3

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 2.03 2.03 2.03
2 2.03 0.26 2.55 2.29 2.80
3 2.03 0.52 3.06 2.55 3.58
4 2.03 1.71 5.46 3.74 7.17
5 2.03 2.57 7.17 4.60 9.74

Table B.8: Molal concentrations for Exp. 8 from Table 4.2.

Exp. 8

Addition NaNO3

[mol kg−1]
Na3PO4

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 2.03 2.03 2.03
2 2.03 0.01 2.06 2.04 2.10
3 2.03 0.05 2.17 2.07 2.31
4 2.03 0.27 2.84 2.30 3.65

Table B.9: Molal concentrations for Exp. 9 from Table 4.2.

Exp. 9

Addition NaNO3

[mol kg−1]
NaNO2

[mol kg−1]
Na2SO4

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 0.00 2.03 2.03 2.03
2 2.03 1.19 0.00 3.22 3.22 3.22
3 2.03 2.37 0.00 4.40 4.40 4.40
4 2.03 3.42 0.00 5.45 5.45 5.45
5 2.03 3.42 0.38 6.22 5.84 6.60
6 2.03 3.42 0.70 6.86 6.16 7.56
7 2.03 3.42 1.02 7.50 6.48 8.52
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Table B.10: Molal concentrations for Exp. 10 from Table 4.2.

Exp. 10

Addition NaNO3

[mol kg−1]
NaNO2

[mol kg−1]
Na2CO3

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 0.00 2.03 2.03 2.03
2 2.03 3.43 0.00 5.46 5.46 5.46
3 2.03 3.43 0.52 6.49 5.98 7.01
4 2.03 3.43 1.03 7.52 6.49 8.55
5 2.03 3.43 1.46 8.38 6.92 9.84
6 2.03 3.43 1.89 9.24 7.35 11.13

Table B.11: Molal concentrations for Exp. 11 from Table 4.2.

Exp. 11

Addition NaNO3

[mol kg−1]
Na2SO4

[mol kg−1]
Na2CO3

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 0.00 2.03 2.03 2.03
2 2.03 1.67 0.00 5.37 3.70 7.03
3 2.03 1.67 0.40 6.17 4.10 8.24
4 2.03 1.67 0.77 6.90 4.47 9.34
5 2.03 1.67 1.13 7.63 4.83 10.42
6 2.03 1.67 1.56 8.49 5.26 11.72
7 2.03 1.67 1.92 9.21 5.62 12.80

Table B.12: Molal concentrations for Exp. 12 from Table 4.2.

Exp. 12

Addition NaNO3

[mol kg−1]
NaNO2

[mol kg−1]
NaCl

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 2.03 0.00 0.00 2.03 2.03 2.03
2 2.03 3.43 0.00 5.46 5.46 5.46
3 2.03 3.43 0.08 5.54 5.54 5.54
4 2.03 3.43 0.43 5.89 5.89 5.89
5 2.03 3.43 0.86 6.32 6.32 6.32
6 2.03 3.43 1.71 7.18 7.18 7.17
7 2.03 3.43 3.27 8.73 8.73 8.73
8 2.03 3.43 3.89 9.35 9.35 9.35
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Table B.13: Molal concentrations for Exp. 13 from Table 4.2.

Exp. 13

Add. NaNO3

[mol kg−1]
NaNO2

[mol kg−1]
Na2SO4

[mol kg−1]
Na2CO3

[mol kg−1]
C+

[mol kg−1]
C−

[mol kg−1]
I

[mol kg−1]
1 1.49 1.26 0.19 0.61 4.35 3.55 2.98
2 1.50 1.26 0.19 0.00 3.14 2.95 1.76
3 1.50 1.27 0.00 0.61 3.99 3.38 2.60
4 1.48 0.00 0.00 0.00 1.48 1.48 0.74
5 1.48 0.00 0.19 0.00 1.86 1.67 1.12
6 1.48 0.00 0.19 0.61 3.07 2.28 2.33
7 1.48 0.00 0.00 0.61 2.70 2.09 1.96
8 1.47 1.25 0.00 0.00 2.72 2.72 1.36
9 1.49 0.63 0.10 0.31 2.92 2.52 1.87
10 0.75 0.00 0.10 0.31 1.56 1.15 1.19
11 0.75 1.27 0.10 0.31 2.83 2.42 1.82
12 0.74 0.62 0.00 0.31 1.98 1.67 1.30
13 0.74 0.62 0.19 0.31 2.36 1.86 1.68
14 0.74 0.63 0.10 0.00 1.57 1.47 0.88
15 0.74 0.63 0.10 0.61 2.79 2.08 2.11
16 0.75 0.63 0.10 0.31 2.19 1.78 1.50
17 0.74 0.63 0.10 0.31 2.19 1.78 1.50
18 0.75 0.63 0.09 0.31 2.18 1.78 1.49
19 0.75 0.63 0.10 0.31 2.19 1.78 1.50
20 0.75 0.63 0.10 0.31 2.19 1.79 1.50
21 0.75 0.63 0.10 0.31 2.19 1.79 1.50
22 0.75 0.63 0.10 0.31 2.19 1.78 1.50
23 0.75 0.63 0.10 0.31 2.19 1.78 1.50
24 0.75 0.63 0.10 0.31 2.19 1.78 1.50
25 0.75 0.63 0.09 0.30 2.18 1.78 1.49
26 0.75 0.63 0.09 0.31 2.18 1.78 1.49
27 0.75 0.63 0.10 0.31 2.19 1.79 1.50
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Table B.15: Molal concentrations for Exp. 15 from Table 4.2.

Exp. 15

Component LAW 1
[mol kg−1]

LAW 6
[mol kg−1]

Na+ 5.790 5.640
NO−

3 2.480 2.180
NO−

2 1.170 1.280
CO2−

3 0.564 0.471
OH− 1.391 1.590

Al(OH)−4 0.140 0.148
K+ 0.234 0.214

SO2−
4 0.048 0.055

Cl− 0.085 0.076
PO3−

4 0.019 0.018
CrO2−

4 0.007 0.008
C2O2−

4 0.005 0.004
F− 0.025 0.024

TOC 0.147 0.147

B.2 Testing Model Fit with the Akaike information criterion (AIC)

We evaluated the model performance based on the number of subpeaks used. The error was

measured using Eq. Equation 4.4. In addition, the Akaike information criterion (AIC) was

calculated:

AIC = nlog(SSE/n) + 2P (B.1)

where n represents the number of independent measurements (61 wavenumbers for each

spectrum), SSE is the sum squared error and P represents the number of model parameters
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Figure B.1: Spectra for Exps. 1 – 3 in Table 4.2.

(subpeaks). The results are shown in Figures Figure B.6 and Figure B.7.
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Figure B.2: Spectra for Exps. 4 – 6 in Table 4.2.

132



Figure B.3: Spectra for Exps. 7 – 9 in Table 4.2.
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Figure B.4: Spectra for Exps. 10 – 12 in Table 4.2.
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Figure B.5: Spectra for Exps. 13 – 15 in Table 4.2.
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Figure B.6: Model fit for a low and high concentration of sodium nitrate from Exp. 1 in
Table 4.2. A comparison was made between a model with five and three subpeaks.
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Figure B.7: Model fit for a low and high concentration of sodium nitrate from Exp. 1 in
Table 4.2. The effect of removing one subpeak at a time was evaluated.
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